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Abstract 

 

Delusions are rigid beliefs held with high certainty despite contradictory evidence. Notwithstanding 

decades of research, we still have a limited understanding of the computational and neurobiological 

alterations giving rise to delusions. In this review, we highlight a selection of recent work in 

computational psychiatry aimed at developing quantitative models of inference and its alterations, with 

the goal of providing an explanatory account for the form of delusional beliefs in psychosis. First, we 

assess and evaluate the experimental paradigms most often used to study inferential alterations in 

delusions. Based on our review of the literature and theoretical considerations, we contend that classic 

draws-to-decision paradigms are not well-suited to isolate inferential processes, further arguing that the 

commonly cited ‘jumping-to-conclusion’ bias may reflect neither delusion-specific nor inferential 

alterations. Second, we discuss several enhancements to standard paradigms that show promise in more 

effectively isolating inferential processes and delusion-related alterations therein. We further draw on our 

recent work to build an argument for a specific failure mode for delusions consisting of prior 

overweighting in high-level causal inferences about partially observable hidden states. Finally, we assess 

plausible neurobiological implementations for this candidate failure mode of delusional beliefs and 

outline promising future directions in this area.  
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Delusions are classically defined as false beliefs held with high certainty despite contradictory evidence. 1 

They are one of two defining symptoms of schizophrenia, the other being hallucinations. Delusions 2 

typically accompany schizophrenia and are common in other psychotic disorders, often producing 3 

immense disruption in the lives of the patients who suffer from them (Heinze et al., 2018; Upthegrove, 4 

2018).  5 

In one famous example, a bright and well-regarded young mathematician became increasingly 6 

convinced that he had the unique ability to decipher a secret code embedded in newspapers. He gradually 7 

developed an unyielding belief that solving this code was necessary to save humanity and that a vast 8 

conspiracy had formed to stop him. Ultimately, this belief consumed much of his life, in spite of 9 

persistent efforts from relatives, friends, and others to convince him that his belief was unfounded. Afraid 10 

for his life, he left behind his job, family, and country (Nasar, 1998).  11 

This case illustrates the tragic, real-life consequences of delusional beliefs as well as their classic 12 

features: falsity, certainty, and rigidity. Of these, the necessity of belief falsity for the operationalization 13 

of delusions was questioned from its conception by Karl Jaspers (Jaspers, 1913), who emphasized the 14 

clinical value of the form over the content of psychotic experiences such as delusions. Jaspers made this 15 

point describing the memorable case of a delusion of jealousy in which the patient’s partner was actually 16 

unfaithful. Difficulties ascertaining belief falsity are now broadly recognized to limit its clinical value. 17 

Additionally, challenges associated with the interpretation of beliefs in different cultural or experiential 18 

contexts, which are also key determinants of delusional themes, further call the definitional value of 19 

delusion content into question (Aschebrock et al., 2003; Gaines, 1995; Gold and Gold, 2012; Spitzer, 20 

1990; Stompe et al., 2003). The variability and intractability of belief content is reflected by current 21 

operationalizations of delusions, which exclusively focus on belief form. The DSM-5 defines delusions 22 

as: “fixed beliefs that are not amenable to change in light of conflicting evidence […]. The distinction 23 

between a delusion and a strongly held idea […] depends in part on the degree of conviction with which 24 

the belief is held despite clear or reasonable contradictory evidence regarding its veracity” [italics added 25 

by authors; (American Psychological Association, 2013)]. Therefore, two essential formal features are 26 

necessary for beliefs to be considered delusional: (1) high subjective certainty (i.e., beliefs held with high 27 

conviction) and (2) belief rigidity (i.e., fixed beliefs resistant to change).  28 

 In this review, we will highlight recent work in computational psychiatry aimed at developing 29 

quantitative inference models describing the form of delusional beliefs in psychotic disorders, with 30 

special attention to those that might capture their two core features—high certainty and rigidity. Other 31 

reviews provide a broader review of the neurocognitive literature on delusions (Corlett et al., 2010). Here, 32 

we focus more narrowly on inference for two reasons. First, it bears historical relevance to the definition 33 

of delusions; e.g., the DSM-III defined delusion as “a false personal belief based on incorrect inference 34 
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about external reality […]” [italics added by the authors; APA, 1980 (American Psychological 35 

Association, 1980)]. Second, and more importantly, inferential models deal with the formation of beliefs 36 

on the basis of observed evidence and past knowledge, a process that has been long theorized to be central 37 

to the genesis of delusions and one that is experimentally tractable. To begin, we first describe the 38 

mathematical foundations for models of inference. 39 

 40 

A primer on Bayesian inference 41 

Inference is generally defined as a method of logical reasoning in which one draws conclusions based on 42 

a set of premises. In abductive inference, a particular type of inference presumed to be relevant to 43 

delusions, one produces a best-guess explanation for a phenomenon based on available information 44 

(Coltheart et al., 2010). Statistically, inference similarly refers to the estimation of the amount of evidence 45 

in support of an explanatory hypothesis based on samples of information.  46 

Bayesian inference is a method for probabilistic computation that optimally combines prior 47 

knowledge with new information. The resulting estimates are statistically optimal in that, on average, they 48 

maximize prediction accuracy. Estimates in Bayesian inference are framed in probabilistic terms as 49 

beliefs reflecting the intuited probabilities of different hypotheses under consideration, which are updated 50 

through the incorporation of new samples of information. This process of belief updating is summarized 51 

in Bayes’ theorem (Eq. 1). Here, the prior belief represents previously acquired knowledge, the likelihood 52 

refers to the evidence provided by a new piece of information, and the posterior belief refers to the new or 53 

updated belief. In this formula, the posterior belief, 𝑃(𝐴|𝑠), the probability of hypothesis 𝐴 after 54 

observing a sample of information 𝑠, is estimated as a function of the prior belief, 𝑃(𝐴), or the probability 55 

of hypothesis 𝐴 before observing 𝑠, and the likelihood, 𝑃(𝑠|𝐴), the probability of 𝑠 if hypothesis 𝐴 were 56 

true (the strength of the evidence of sample 𝑠 in support of hypothesis 𝐴), divided by a normalization 57 

factor. 58 

 59 

𝑃(𝐴|𝑠)  =  
𝑃(𝐴) ⋅ 𝑃(𝑠|𝐴)

𝑃(𝑠)
 =  

𝑃(𝐴) ⋅ 𝑃(𝑠|𝐴)

(𝑃(𝐴) ⋅ 𝑃(𝑠|𝐴)) + (𝑃(𝐵) ⋅ 𝑃(𝑠|𝐵))
 Eq. 1 

 60 

To illustrate the intuition behind this equation, consider a hypothetical scenario where John, 61 

unable to find an important document he saved in a shared computer, suspects that a co-worker may have 62 

intentionally deleted it to sabotage his work. John knows of previous similar events in their company, 63 

which promotes fierce competition between co-workers. Given this document loss (𝑠), should John 64 

conclude his co-worker intentionally sabotaged him (hypothesis 𝐴) or that it was an accident (hypothesis 65 

𝐵)? Based on his prior knowledge, John considers the a priori probability of a co-worker trying to 66 
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sabotage him [𝑃(𝐴)] to be moderately low, about 0.2. But his meticulous bookkeeping makes this 67 

document loss a very rare event, so he considers it strong evidence for sabotage, with a likelihood 68 

[𝑃(𝑠|𝐴)] of about 0.75. Applying Bayes’ theorem to optimally combine the prior beliefs [𝑃(𝐴) =69 

0.2;  𝑃(𝐵) = 0.8] and likelihoods [𝑃(𝑠|𝐴) = 0.75;  𝑃(𝑠|𝐵) = 0.25] would lead John to reach the 70 

posterior belief that the probability he was sabotaged is: 71 

𝑃(𝐴|𝑠) = (0.2 ⋅  0.75) ((0.2 ⋅  0.75) + (0.8 ⋅ 0.25)) = 0.43⁄ . 72 

Bayesian inference over two complementary hypotheses can be reframed as the computation of 73 

their log odds (Eq. 2), rather than in terms of the raw probabilities. A formulation of Bayes’ theorem in 74 

this logit space (Eq. 3) shows that inference reduces to an additive process, akin to that observed in the 75 

activity of neuronal populations involved in perceptual decisions (Gold and Shadlen, 2007).  76 

 77 

                                                𝑙𝑜𝑔 (
𝑃(𝐴|𝑠)

𝑃(𝐵|𝑠)
) =  𝑙𝑜𝑔 (

𝑃(𝐴)

𝑃(𝐵)
) +  𝑙𝑜𝑔 (

𝑃(𝑠|𝐴)

𝑃(𝑠|𝐵)
)                                               Eq. 2 

 78 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝐴) =  𝑙𝑜𝑔𝑖𝑡 (𝑝𝑟𝑖𝑜𝑟𝐴)  +  𝑙𝑜𝑔𝑖𝑡 (𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝐴) Eq. 3 

 79 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝐴) =  𝜔1 ⋅ 𝑙𝑜𝑔𝑖𝑡 (𝑝𝑟𝑖𝑜𝑟𝐴)  +  𝜔2 ⋅ 𝑙𝑜𝑔𝑖𝑡 (𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝐴) Eq. 4 

 80 

Parameterizing this logit formulation via a prior weight 𝜔1 and a likelihood weight 𝜔2 (weighted 81 

Bayesian model; Eq. 4) makes apparent that the Bayesian recipe for optimally combining prior beliefs and 82 

likelihoods consists of giving them an equal weight of 1 (𝜔1 = 𝜔2 = 1). This common parameterization 83 

(Ambuehl and Li, 2018; Benjamin et al., 2019) also conveniently captures specific classes of deviations 84 

from optimality, since either the prior or the likelihood terms could theoretically be over- or under-85 

weighted with respect to the ideal Bayesian benchmark. In the example above, for instance, John could 86 

have partially discounted his prior knowledge (𝜔1 < 1), which would have led him to erroneously 87 

overestimate the posterior probability that he was being sabotaged (e.g., an 𝜔1 = 0.5 would produce a 88 

posterior belief 𝑃(𝐴|𝑠) = 0.60 for sabotage). 89 

In sum, Bayesian inference can be used as a formal framework to quantify inference in terms of 90 

probabilistic beliefs. Critically, this framework provides an objective benchmark that empirical data can 91 

be measured against in order to examine deviations from optimality and interindividual variability in 92 

different elements of the inference process.  93 

 94 

Brief summary of inferential theories of delusions 95 
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Although the general notion that delusions stem from alterations in reasoning was inherent to early 96 

clinical conceptualizations, it was Hemsley and Garety who proposed framing delusional beliefs as 97 

deviations in specific aspects of optimal Bayesian inference (Hemsley and Garety, 1986). They did not 98 

hypothesize a single alteration at the core of delusion formation and maintenance. Rather, they catalogued 99 

a bounty of potential deviations at the level of the different variables comprising the Bayesian algorithm 100 

that, mostly based on clinical intuition, could be reasonable candidates for explaining some aspects of 101 

delusional ideation. Their seminal proposal built on prior work (Fischhoff and Beyth-Marom, 1983) 102 

which similarly catalogued deviations from optimal inference as candidate mechanisms for explaining a 103 

variety of biases in judgment and decision-making that are commonly observed in the general, healthy 104 

population. They argued that variations in these biases could explain the characteristic resistance of 105 

delusional beliefs to disconfirmatory evidence, or their rigidity, as well as the characteristic high certainty 106 

with which the beliefs are held. Among the list of possible deviations that Hemsley and Garety (1986) 107 

considered was an alteration in the weighting of prior beliefs—captured by the parameter 𝜔1 in Eq. 4—108 

noting that “deluded patients frequently tell interviewers that they have never considered the possibility of 109 

the falsity of their beliefs.” As another candidate, they suggested a ‘confirmation bias’ whereby beliefs 110 

might be more responsive to new information consistent with prior beliefs relative to information 111 

inconsistent with them (or, equivalently, disproportionate weighting of the numerator in the likelihood 112 

ratio in Eq. 2 if 𝐴 corresponded to the more likely a priori hypothesis). By focusing on deviations in 113 

specific parameters weighting the variables comprising a relevant algorithm and linking them to clinical 114 

phenomena, a concept commonly termed ‘failure modes’ in the burgeoning field of computational 115 

psychiatry (Redish et al., 2008; Walters and Redish, 2018), this work provided an influential framework 116 

for understanding delusions in terms of concrete alterations in Bayesian inference.  117 

Crucially, the notion of delusion-related alterations in inference does not imply that healthy 118 

individuals are unbiased Bayesians (e.g., exhibiting 𝜔1 = 𝜔2 = 1) and only delusional patients exhibit 119 

some distinct biases (e.g., 𝜔1 ≠ 𝜔2 ≠ 1). That is, “normal” inference in the healthy population does not 120 

necessarily correspond to optimal inference. Indeed, this notion built upon research showing common 121 

biases among healthy individuals that suggest deviations from optimal Bayesian inference (Fischhoff and 122 

Beyth-Marom, 1983), including the underweighting of prior information (𝜔1 < 1; (Bar-Hillel, 1980; 123 

Benjamin, 2019; Kahneman and Tversky, 1973)) and distortions in the incorporation of likelihoods 124 

(Gonzalez and Wu, 1999). Hemsley and Garety instead adopted a more dimensional view under which 125 

delusions could be driven by quantitative differences in the same kinds of deviations from optimality 126 

exhibited by healthy individuals (Hemsley and Garety, 1986).  127 

Motivated by the known hierarchical organization of the brain and the hierarchical nesting of 128 

information in the environment, modern theories of information processing in the brain tend to 129 
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conceptualize inference as a hierarchical process. Accordingly, modern theories of delusions focus on 130 

alterations in hierarchical inference (Adams et al., 2013; Fletcher and Frith, 2009; Friston, 2008; Sterzer 131 

et al., 2018). Hierarchical-inference models comprise multiple, interdependent levels of processing, with 132 

lower levels supporting inferences on less abstract processes, like perception of the low-level features of 133 

sensory stimuli (e.g., the color of a tree leaf), and higher levels supporting inferences on increasingly 134 

abstract concepts, such as estimation of the underlying—hidden—states generating the observed stimuli 135 

and the processes that govern the variability in these hidden states (e.g., the seasons of the year). Similar 136 

to the existing feedforward and feedback connections between brain regions, levels are interconnected 137 

through bottom-up connections sending information from lower to higher levels and top-down 138 

connections sending information from higher to lower levels. Critically, this message-passing between 139 

levels allows hierarchical inference to combine information across levels (e.g., predicting that tree leaves 140 

will turn red by incorporating higher-level, contextual prior knowledge that the Fall has arrived). 141 

Although different hierarchical-inference models exist that vary in the exact implementation of message-142 

passing between levels and in their overall architecture, these models are conceptually and algorithmically 143 

similar. Of these, two are most relevant to delusions and schizophrenia: generalized predictive coding, 144 

here understood broadly to encompass active inference and related models (Adams et al., 2013; Friston et 145 

al., 2016; Smith et al., 2020), and belief propagation (Jardri and Denève, 2013). We present a simplified 146 

explanation of their differences below.  147 

Generalized predictive-coding models posit that the key signal for belief updating at each level of 148 

the hierarchy is a weighted prediction error (𝑃𝐸). The level-specific prediction error reflects the 149 

difference between a top-down signal encoding a prior expectation conveyed from the level above and the 150 

bottom-up input from the level below. Importantly, this prediction error is scaled based on the relative 151 

uncertainties of the top-down prior expectation and the bottom-up signal to favor the less uncertain—or 152 

the more reliable—of these two sources of information. This relates to the concept of Bayesian cue 153 

combination (Daw, 2014; Knill and Pouget, 2004), which is apparent when examining Bayesian inference 154 

on the mean, 𝜇, of an underlying continuous variable based on an observed stimulus 𝑠 (representing a 155 

sample of the underlying variable corrupted by Gaussian noise): 156 

 157 

𝜇𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 𝜔1
′ ⋅ 𝜇𝑝𝑟𝑖𝑜𝑟 +  𝜔2

′ ⋅ 𝑠                                                Eq. 5 

 158 

Here, the prior weight 𝜔1′ and the weight on the sensory observation 𝜔2′ reflect the optimal 159 

weighting, which here is not fixed for each individual variable but instead depends on their relative 160 

uncertainties or variances 𝜎𝑝𝑟𝑖𝑜𝑟
2  and 𝜎𝑠

2, such that the two weights add up to 1.  161 

 162 
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  𝜔1
′ =  

𝜎𝑠
2

𝜎𝑠
2 +  𝜎𝑝𝑟𝑖𝑜𝑟

2    and      𝜔2
′ =  

𝜎𝑝𝑟𝑖𝑜𝑟
2

𝜎𝑠
2 +  𝜎𝑝𝑟𝑖𝑜𝑟

2 , where 𝜔1
′ +  𝜔2

′ =  1#Eqs. 6 and 7  

 163 

Given that the magnitude of a belief update is the difference between the new, updated belief and 164 

the previous one (𝜇𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 − 𝜇𝑝𝑟𝑖𝑜𝑟), we can rearrange1 Eq. 5 to show that this Bayesian belief update is 165 

driven by weighted prediction errors (𝜔2
′ ⋅ 𝑃𝐸), or the difference between the observed stimulus 𝑠 and its 166 

expectation 𝜇𝑝𝑟𝑖𝑜𝑟 scaled by the weight on the sensory observation 𝜔2
′ . 167 

 168 

𝜇𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = (1 − 𝜔2
′ ) ⋅ 𝜇𝑝𝑟𝑖𝑜𝑟 +  (𝜔2

′ ⋅ 𝑠)#Eq. 8  

 169 

𝜇𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 − 𝜇𝑝𝑟𝑖𝑜𝑟 =  𝜔2
′ ⋅ (𝑠 −  𝜇𝑝𝑟𝑖𝑜𝑟) =  𝜔2

′ ⋅ 𝑃𝐸#Eq. 9  

  

In generalized predictive-coding models, the weighting of prediction errors at a given level is 170 

therefore the key variable controlling belief updates at that level. Within the active inference framework, 171 

this weight is adjusted by estimates from higher levels about the variability of the underlying generative 172 

process, with the ultimate goal of minimizing surprising outcomes (i.e., by optimizing predictions and 173 

acting to minimize surprise) to maintain long-term homeostasis (Friston, 2010). Misestimating the 174 

underlying process to be less variable than warranted (e.g., underestimating its volatility), will modify the 175 

weight of prediction errors, and belief updating, in lower levels. Under this framework, delusions are 176 

proposed to ultimately result from excessive weighting of high-level prior beliefs (as if a high-level 𝜔1′ is 177 

overweighted; (Adams, 2018; Adams et al., 2014; Adams et al., 2013)). However, this is framed as a 178 

secondary, state-dependent compensation for a core alteration consisting of overweighting of sensory 179 

evidence at the lower levels (as if a low-level 𝜔2
′  is overweighted). Initially this alteration causes large 180 

fluctuations in beliefs, possibly boosting bottom-up salience of irrelevant sensory stimuli in line with 181 

theories of salience misattribution (Corlett et al., 2009; Fletcher and Frith, 2009; Heinz et al., 2019; 182 

Kapur, 2003; Sterzer et al., 2018). But the system’s tendency towards minimizing surprise leads to a 183 

compensatory overweighting of high-level prior beliefs, which eventually stabilizes beliefs. 184 

                                                       
1 We first obtain Eq. 8 from Eq. 5 via the substitution of a rearranged Eq. 7, namely 𝜔1

′ = 1 − 𝜔2
′ . We may then use 

Eq. 8 to examine the Bayesian update as the difference:  
𝜇𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 − 𝜇𝑝𝑟𝑖𝑜𝑟 = (1 − 𝜔2

′ ) ⋅ 𝜇𝑝𝑟𝑖𝑜𝑟 +  (𝜔2
′ ⋅ 𝑠) − 𝜇𝑝𝑟𝑖𝑜𝑟 

Distributing and canceling the extraneous 𝜇𝑝𝑟𝑖𝑜𝑟 terms gives: 

𝜇𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 − 𝜇𝑝𝑟𝑖𝑜𝑟 = 𝜇𝑝𝑟𝑖𝑜𝑟 − (𝜔2
′ ⋅ 𝜇𝑝𝑟𝑖𝑜𝑟) +  (𝜔2

′ ⋅ 𝑠) − 𝜇𝑝𝑟𝑖𝑜𝑟 

𝜇𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 − 𝜇𝑝𝑟𝑖𝑜𝑟 = (𝜔2
′ ⋅ 𝑠) − (𝜔2

′ ⋅ 𝜇𝑝𝑟𝑖𝑜𝑟)  

A simple reorganization of the above 𝜔2
′  terms then yields the desired result in Eq. 9. 
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In the belief propagation model (Denève and Jardri, 2016; Jardri and Denève, 2013; Leptourgos 185 

et al., 2017), in contrast, logit beliefs are iteratively updated based on logit likelihoods reflecting the 186 

strength of the evidence at a given level, with increasing levels representing beliefs about broader 187 

concepts (e.g., green  leaves  trees  forest). Critically, the top-down and bottom-up connections 188 

between levels are governed by independent self-inhibitory processes, presumed to depend on distinct 189 

subpopulations of inhibitory (GABAergic) interneurons. An adequate level of inhibition prevents 190 

reverberation of messages (i.e., the same message being sent multiple times) reflecting either bottom-up 191 

sensory evidence or top-down prior beliefs. In turn, disruptions in the inhibitory processes, hypothesized 192 

to derive from alterations in excitation-to-inhibition balance in schizophrenia, lead to alterations in 193 

inference characterized by overcounting messages. This scenario is termed ‘circular inference’. Bottom-194 

up disinhibition leads to reverberation or overcounting of sensory evidence, which effectively implements 195 

a type of overweighting of sensory evidence; top-down disinhibition leads to reverberation or 196 

overcounting of prior beliefs, which effectively implements a type of overweighting of prior beliefs. In 197 

the short run, circular inference was shown to explain excessive belief certainty in the face of weak 198 

sensory evidence. In the long run, circular inference captured the development of strong and certain 199 

probabilistic associations between higher-level and lower-level constructs when these were actually 200 

unrelated and only weak evidence supported their association. The circular-inference model produces 201 

delusion-like conditional beliefs—false, overly certain, and rigid—only in ambiguous situations, which 202 

was proposed to explain the persecutory nature of delusions given the high inherent uncertainty of social 203 

inferences (relative to lower-level perceptual inference). Although Jardri and Denève (2013) suggested 204 

that bottom-up or top-down disinhibition could be consistent with different behaviors observed in 205 

schizophrenia, invoking in part the beads-task literature (see below), they proposed that psychotic 206 

symptoms such as delusions primarily originate from bottom-up disinhibition leading to overcounting of 207 

sensory evidence.  208 

 209 

Empirical findings and gaps in the literature on inferential alterations in delusions 210 

The inferential models of delusions described above inspired a substantial body of work aimed at 211 

empirically testing model predictions to isolate the cognitive and computational mechanisms underlying 212 

delusions in schizophrenia-spectrum disorders. Reframed in computational-psychiatry terms, the ultimate 213 

goal of this effort is to identify the failure mode(s) in inferential processes that give rise to delusions. This 214 

goal requires the ability to isolate interindividual variability in behaviors which can be selectively 215 

attributed to altered inferential processes and subprocesses, rather than to broader cognitive deficits such 216 

as those typically seen in schizophrenia (e.g., global neurocognitive deficits in working memory, verbal 217 

memory, and processing speed generally unrelated to positive symptoms like delusions) or other general 218 
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factors associated with the illness (e.g., chronicity, institutionalization or hospitalization, socioeconomic 219 

conditions, medication, co-morbid psychiatric and medical conditions). So, can we do this? 220 

The most prolific experimental paradigm in empirical studies of inference in schizophrenia is the 221 

“beads task” (also known as the “urn and beads task”), itself an instantiation of the so-called “bookbag 222 

and poker-chip” experiments (Benjamin, 2019). Based on Hemsley and Garety’s theoretical framing for 223 

delusions, Huq et al. (Huq et al., 1988) conducted the first experiment using the beads task in 224 

schizophrenia. In their task, participants were shown two jars filled with a mixture of colored beads, with 225 

the majority color defining the identity of the jar (jar 𝐴: 85% beads of color 𝑎, 15% beads of color 𝑏; jar 226 

𝐵: 85% beads of color 𝑏, 15% beads of color 𝑎). Next, the jars were hidden, and participants were 227 

informed that one of the jars would be chosen at random with equal probability. Participants were 228 

presented with one bead at a time from the chosen jar (randomly drawn from the jar with replacement) 229 

and after each bead was presented, participants could guess the identity of the chosen jar (jar 𝐴 or jar 𝐵) 230 

or request another bead. With Eqs. 1-2 as a reference, it should now be straightforward to see how this 231 

task was designed to capture a process of causal inference on hidden states (the hidden jars): here, the 232 

observed color of the bead at a given draw provides an information sample 𝑠 (where 𝑠 can take on colors 233 

𝑎 or 𝑏) used to update beliefs about the identity of the chosen jar [𝑃(𝐴|𝑠) or 𝑃(𝐵|𝑠)], which according to 234 

Bayes’ theorem should depend on the prior belief before observing this bead [𝑃(𝐴) or 𝑃(𝐵)] and the 235 

likelihood or strength of the evidence supporting each jar [in this case, 𝑃(𝑎|𝐴) = 0.85 and 𝑃(𝑏|𝐴) =236 

0.15 for jar 𝐴, and vice versa for jar 𝐵]. The main behavioral measures in this beads task were draws-to-237 

decision, the total number beads requested before making a final guess, and reported probability estimates 238 

of the chosen jar being 𝐴 or 𝐵 elicited after each bead draw (a subjective estimate of the posterior belief 239 

of the chosen jar). No method to incentivize reporting of true beliefs or preferences was used. Task 240 

behavior was obtained from 15 participants diagnosed with schizophrenia and active, severe delusions, 10 241 

psychiatric controls without a diagnosis of schizophrenia and without delusions, and 15 healthy controls. 242 

The main results were that patients with schizophrenia requested fewer beads before making a guess 243 

relative to both control groups, i.e., they exhibited reduced draws-to-decision, and tended to report higher 244 

probability estimates for the chosen jar after seeing only one bead. The reduction in draws-to-decision in 245 

schizophrenia was later dubbed the “jumping to conclusions” bias (Dudley et al., 1997a, b) and has been 246 

broadly replicated in subsequent research, as discussed below. Setting the stage for later work, Huq et al. 247 

evaluated these behavioral results against the Bayesian-inference benchmark described above and put 248 

forward the influential interpretation that patients with delusions tended to overweight the evidence 249 

associated with the bead samples. Concretely, the authors argued that patients with delusions were less 250 

susceptible to conservatism bias, which can be defined as the underweighting of the likelihood (i.e., as if 251 

the likelihood weight 𝜔2 in Eq. 4 was relatively greater in the schizophrenia patient group than in the 252 
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control groups). This interpretation was supported by higher reported probability estimates after the first 253 

bead in patients with delusions, suggesting at least a relative overweighting of the likelihood. The authors 254 

also took the decrease in draws-to-decision to support this interpretation, assuming that more certain 255 

posterior beliefs (i.e., estimated probabilities closer to 1) would increase the probability of patients 256 

venturing a guess.  257 

While compelling, this work stopped short of pinpointing a specific link between delusions and 258 

inferential alterations. Despite their laudable efforts to isolate delusional processes, the active delusions 259 

group in Huq et al. conflated delusions with active psychotic symptoms and with a diagnosis of 260 

schizophrenia, precluding the attribution of any group differences to delusions specifically. Furthermore, 261 

they did not discuss or rule out alternative explanations apart from inferential alterations, such as 262 

disproportionate effects in their active patient group of general cognitive deficits (e.g., broader, non-263 

specific neurocognitive deficits that could interfere with performance on this task, as they do with a 264 

variety of other tasks) or other motivational determinants to stop sampling.  265 

After the seminal work by Huq et al., the beads task became a widespread paradigm in studies on 266 

inference and delusions (Dudley et al., 2016; McLean et al., 2017; Ross et al., 2015), which heavily 267 

focused on draws-to-decision as a convenient measure of presumed relevance to inferential processes. 268 

Many of these subsequent studies have used the classic version of the task, with little or no modifications 269 

from Huq et al.’s task, although a common variant includes a memory aid indicating previous bead draws 270 

within a trial to control for potential working-memory confounds (Dudley et al., 1997b). Notably, these 271 

experiments typically included very few trials of the beads task—only 1 or 2 trials per likelihood 272 

condition in many cases—and often reused the same sequences from previous studies. Three recent meta-273 

analyses have summarized this large body of work. In general, studies consistently find that patients with 274 

schizophrenia tend to exhibit the jumping-to-conclusions bias, characterized by decreased draws-to-275 

decision compared to healthy or psychiatric controls. But critically, these meta-analyses do not provide 276 

clear evidence for a specific link to delusions. One of these meta-analyses (Dudley et al., 2016) found no 277 

evidence of differences in jumping-to-conclusions bias when comparing patients with schizophrenia who 278 

had active delusions to those who did not have active delusions after controlling for study quality and 279 

other factors. Another meta-analysis (McLean et al., 2017) did find group differences when comparing 280 

groups with active delusions to groups without active delusions, including schizophrenia and other 281 

psychiatric diagnoses. However, the sample descriptions suggest these groups may correspond more 282 

generally to ‘actively psychotic’ and ‘stable’ patients, respectively. Consequently, differences between 283 

these groups could be due to factors unrelated to delusions, such as interference of positive symptoms and 284 

disorganization with task performance, general illness severity, and several other cognitive, motivational, 285 

and treatment-related factors. To circumvent this issue, several studies have focused on correlating 286 
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measures of task performance such as draws-to-decision with specific measures of delusion severity. A 287 

common measure of delusional and delusion-like ideation in this literature has been the Peters Delusion 288 

Inventory (PDI; (Peters et al., 2004)). The third meta-analysis (Ross et al., 2015) focused on studies 289 

examining correlations with interindividual variability in PDI scores. While this meta-analysis found a 290 

correlation between the jumping-to-conclusion bias and higher PDI scores, this effect was only present 291 

when analyzing clinical and non-clinical populations together or in non-clinical populations alone, but 292 

was absent when limiting the analysis to patients who were clinically delusional. Altogether, despite the 293 

consistent evidence for a jumping-to-conclusions bias in schizophrenia, clear support for a specific 294 

relationship between reduced draws-to-decision and clinical delusions in psychotic patients is lacking 295 

from this literature. 296 

 In addition to the classic, draws-to-decision version of the beads task, “graded estimates” or 297 

probability-estimation versions of the beads task show participants a predetermined number of bead 298 

draws and prompt them on a draw-by-draw basis to submit continuous probability estimates indicating 299 

their certainty about the hidden jars on a Likert or visual analogue scale (Moritz and Woodward, 2005; So 300 

et al., 2016; Speechley et al., 2010; Young and Bentall, 1997). Thus, these tasks aim to directly elicit the 301 

subjective posterior beliefs about the hidden jars given an observed sequence of beads [e.g., the subjective 302 

version of 𝑃(𝐴|𝑎𝑎𝑏𝑎)] instead of eliciting sampling decisions based on these beliefs. Studies using this 303 

probability-estimation method generally find that patients with schizophrenia and delusions tend to report 304 

higher levels of certainty earlier than healthy controls, which in principle accords with delusional beliefs 305 

being held with high certainty. At odds with the definition of delusions, however, these studies also show 306 

that patients change their estimates more in response to beads that represent “disconfirmatory” evidence 307 

or evidence against the most likely chosen jar up to that draw [e.g., the last bead 𝑏 in the sequence 308 

𝑎𝑎𝑎𝑎𝑏, which counters the previous evidence for the chosen jar being 𝐴, decreasing the certainty of the 309 

posterior belief for jar 𝐴 such that 𝑃(𝐴|𝑎𝑎𝑎𝑎) > 𝑃(𝐴|𝑎𝑎𝑎𝑎𝑏)]. Based on the argument laid out above, 310 

these results are consistent with the notion of a jumping-to-conclusions bias in patients. However, as with 311 

the draws-to-decision tasks, the definition of patient groups in these studies precludes attributing 312 

behavioral differences specifically to delusions (as opposed to schizophrenia or active psychosis). Further 313 

complicating this picture, the effects in the probability-estimation paradigms are less robust and less 314 

replicable (Fine et al., 2007) than those on the standard draws-to-decision measure (Ross et al., 2015). 315 

Moreover, despite notable exceptions (Adams, 2018; Schmack et al., 2013; Stuke et al., 2017; Stuke et 316 

al., 2019), common analytical approaches to probability-estimation beads tasks hinder their interpretation 317 

in terms of subjective beliefs. Continuous changes in reported probabilities as a function of draws are 318 

often discretized into measures such as draws-to-maximum-certainty, effectively treating the data in the 319 

same fashion as draws-to-decision. Beyond these considerations, even if the phenotypes from probability-320 
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estimates beads tasks had been empirically linked to delusions, a general account of delusions in terms of 321 

a presumed increase in weighting of evidence or likelihood (i.e., increased 𝜔2) would still face the critical 322 

challenge of explaining the rigidity and resistance to disconfirmatory evidence that defines delusional 323 

beliefs in general (with perhaps the exception of specific phenomena like ‘delusional perception’; but see 324 

Adams, 2018).   325 

 Decreased draws-to-decision, and perhaps other behaviors elicited by beads-task paradigms, are 326 

associated with a diagnosis of schizophrenia but not specifically with delusions. If not a delusion-related 327 

process, what do these behaviors reflect? As with performance impairments on any cognitive task in a 328 

clinical population such as schizophrenia, an obvious culprit is the global neurocognitive deficit inherent 329 

to the illness. Against the backdrop of broad motivational (Green et al., 2012; Nakagami et al., 2008; 330 

Takeda et al., 2017) and neurocognitive deficits associated with schizophrenia (Fioravanti et al., 2005; 331 

Habtewold et al., 2020; Luck et al., 2019), impaired performance could be explained by an inability to 332 

comprehend or retain task instructions, insufficient task engagement, performance anxiety, or feeling 333 

rushed, among other factors. Indeed, several prior studies supporting this notion (Balzan et al., 2012a; 334 

Dudley et al., 1997b; Freeman et al., 2014; van der Leer and McKay, 2014) directly challenge the ability 335 

of the classic beads task to isolate inferential processes (Baker et al., 2019; Fine et al., 2007; McLean et 336 

al., 2020a; McLean et al., 2020b; Ross et al., 2015). But perhaps the most conclusive finding in this 337 

regard came from a recent beads-task study in the largest schizophrenia sample to date (Tripoli et al., 338 

2020), which included 817 patients with first-episode psychosis and 1,294 controls from the general 339 

population. Here, the jumping-to-conclusions bias in patients with schizophrenia was fully explained by 340 

lower IQ (that is, diagnosis effects were no longer significant after accounting for IQ in a mediation 341 

analysis), indicating that the jumping-to-conclusions bias resulted from a global cognitive deficit rather 342 

than from a more circumscribed delusion-related process. Further supporting this notion, this study 343 

reported a correlation between delusion severity and increased—not decreased—draws-to-decision, 344 

although this effect was less robust.  345 

Decreased draws-to-decision, and perhaps other behaviors elicited by beads-task paradigms, are 346 

associated with a diagnosis of schizophrenia but not specifically with delusions. If not a delusion-related 347 

process, what do these behaviors reflect? As with performance impairments on any cognitive task in a 348 

clinical population such as schizophrenia, an obvious culprit is the global neurocognitive deficit inherent 349 

to the illness. Against the backdrop of broad motivational (Green et al., 2012; Nakagami et al., 2008; 350 

Takeda et al., 2017) and neurocognitive deficits associated with schizophrenia (Fioravanti et al., 2005; 351 

Habtewold et al., 2020; Luck et al., 2019), impaired performance could be explained by an inability to 352 

comprehend or retain task instructions, insufficient task engagement, performance anxiety, or feeling 353 

rushed, among other factors. Although overlooked in earlier studies, more recent work indeed supports a 354 
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role for these non-inferential factors in the jumping-to-conclusions bias observed in schizophrenia 355 

(Balzan et al., 2012a; Dudley et al., 1997b; Freeman et al., 2014; Tripoli et al., 2020; van der Leer and 356 

McKay, 2014; White and Mansell, 2009), directly challenging the ability of the classic beads task to 357 

isolate inferential processes (see Box 1 for a more detailed discussion). But perhaps the most conclusive 358 

finding in this regard came from a recent beads-task study in the largest schizophrenia sample to date 359 

(Tripoli et al., 2020), which included 817 patients with first-episode psychosis and 1,294 controls from 360 

the general population. Here, the jumping-to-conclusions bias in patients with schizophrenia was fully 361 

explained by lower IQ (that is, diagnosis effects were no longer significant after accounting for IQ in a 362 

mediation analysis), indicating that the jumping-to-conclusions bias resulted from a global cognitive 363 

deficit rather than from a more circumscribed delusion-related process. Further supporting this notion, 364 

this study reported a correlation between delusion severity and increased—not decreased—draws-to-365 

decision, although this effect was less robust.  366 

Taken together, these results strongly challenge the common assumption that the jumping-to-367 

conclusions bias, and its hypothesized computational underpinnings (e.g., overweighting of likelihoods in 368 

inferences on hidden states), play a general and significant role in the genesis or maintenance of delusions 369 

in schizophrenia. More generally, the demonstrated susceptibility of the standard draws-to-decision 370 

measure to general cognitive impairment questions its suitability as a tool for selective interrogation of 371 

inferential processes relevant to delusions. How can we better probe these processes?  372 

 373 

Distinguishing inferential and non-inferential processes 374 

The preceding discussion implies the need to devise improved paradigms for isolating inferential 375 

processes and alterations therein. To expand further on our definition of inference, and dispel common 376 

misconceptions in the literature, we first distinguish inferential processes from other non-inferential 377 

processes involved in decision making.  378 

In describing the different conventional beads-task paradigms, we focused on two metrics: the 379 

reported probabilities indicating certainty about the hidden jars (the main measure from the probability-380 

estimation tasks) and the decisions to continue or stop drawing additional beads (the main measure from 381 

the draws-to-decision tasks). These behaviors are typically thought to map onto two distinct processes and 382 

are often studied with different paradigms: the first reflects subjective posterior beliefs about hidden states 383 

[e.g., 𝑃(𝐴|𝑎𝑏)] such as those obtained through belief-elicitation tasks; the second reflects sampling 384 

decisions such as those studied via information-sampling paradigms. These two processes are 385 

fundamentally distinct. The first reflects a belief while the second reflects an action based on that belief. 386 

To further illustrate their precise differences, and to shed light on the process of making decisions on the 387 

basis of beliefs, we turn to an optimal model for sampling decisions that has been applied to solve the 388 
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beads task and similar problems (Averbeck, 2015; Kaelbling et al., 1998): the partially observable 389 

Markov decision process (POMDP). 390 

 Again, the draws-to-decision version of the beads task is an information-sampling paradigm that 391 

measures decisions to sample or to stop sampling beads. Bayesian inference alone does not provide a 392 

solution for making this type of decision. The POMDP algorithm (Fig. 1) incorporates Bayesian inference 393 

and additionally maximizes rewards in sampling decisions by finding the turn (e.g., draw or sample 394 

number) at which the costs of information sampling (the costs of drawing an additional bead and the 395 

expected future gains derived from it) outweigh the costs of incorrectly guessing hidden states (guessing 396 

the identity of the chosen jar), at which point a rational agent should stop sampling. In the context of the 397 

beads task, the POMDP provides the optimal draws-to-decision for any given bead sequence and cost 398 

structure. Critically, the solution depends on the explicit costs of sampling and on choice accuracy—that 399 

is, the penalty associated with a bead draw and with an incorrect jar guess, as well as the reward 400 

associated with a correct guess (in monetary or other units). But more important for our illustration are the 401 

mechanics through which the POMDP reaches a sampling decision.  402 

The POMDP can be portrayed as the combination of three modules that are hierarchically nested: 403 

Bayesian inference (Fig. 1b), value comparison (Fig. 1c), and choice (Fig. 1d). Bayesian inference is used 404 

to compute probabilistic beliefs about the hidden states (Fig. 1b) based on observed samples (Fig. 1a). 405 

Based on these beliefs, which reflect the intuited probabilities of different outcomes, and on the rewards 406 

and costs of those outcomes, an expected value for each alternative option (drawing and guessing in 407 

future turns versus guessing at the current turn) is calculated and compared (Fig. 1c). Finally, the option 408 

with the highest expected value is chosen (Fig. 1d). This approximately maps onto the consecutive steps 409 

which participants completing the beads task may follow, at least if they were given explicit costs for a 410 

bead draw and for an incorrect guess and an explicit reward for a correct guess. Intuitively, early in a trial 411 

and after observing only a few beads, participants will be uncertain about the identity of chosen jar [e.g., 412 

𝑃(𝐴|𝑎𝑏)~𝑃(𝐵|𝑎𝑏)~0.5] because they have only gathered a small amount of evidence. If they were to 413 

make a guess at that point, the probability of an error would be high (~0.5). Assuming the cost of an 414 

incorrect guess is high enough and they are motivated to avoid it, participants would lean towards 415 

drawing another bead, assuming also its cost is low enough. In other words, at that point, the expected 416 

value of drawing is higher than that of guessing. But after drawing enough beads, once participants are 417 

very certain about the identity of chosen jar [e.g., 𝑃(𝐴|𝑎𝑏𝑎𝑎𝑎𝑎) ≫ 𝑃(𝐵|𝑎𝑏𝑎𝑎𝑎𝑎)], the expected 418 

probability of an incorrect guess would be low and the expected value of guessing (and obtaining the 419 

reward associated with a correct guess) would exceed that of drawing, at which point the optimal choice 420 

would be to stop sampling and guess. The number of draws before the guess in this scenario would thus 421 

correspond to the optimal draws-to-decision behavior for that sequence and cost structure. 422 
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Critically, the POMDP illustrates that decisions to sample are based on beliefs about hidden 423 

states, but are still distinct from them. In the example above, the posterior belief about jar 𝐴 after 424 

observing the bead sequence 𝑎𝑏𝑎𝑎𝑎𝑎 is the probability 𝑃(𝐴|𝑎𝑏𝑎𝑎𝑎𝑎). In turn, the expected value of 425 

guessing 𝐴 depends on the probability of an incorrect response, which is a function of the posterior belief, 426 

and on its cost. More generally, and beyond the POMDP (Glimcher and Rustichini, 2004), the expected 427 

value of choosing an option reflects the costs associated with the different possible outcomes (e.g., 𝐴 428 

being indeed the chosen jar or not) resulting from that choice, weighted by their probabilities. In the 429 

example case, this is given by the following equation (where positive costs would reflect rewards and 430 

negative costs penalties): 431 

 432 

𝐸𝑉𝑔𝑢𝑒𝑠𝑠 𝐴  = P(𝐴|𝑎𝑏𝑎𝑎𝑎𝑎) ⋅ 𝐶𝑜𝑠𝑡𝑐𝑜𝑟𝑟𝑒𝑐𝑡 +  P(𝐵|𝑎𝑏𝑎𝑎𝑎𝑎) ⋅ 𝐶𝑜𝑠𝑡𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 +  draw number ⋅ 𝐶𝑜𝑠𝑡𝑑𝑟𝑎𝑤  

#Eq. 10
 

 433 

The POMDP calculates the expected value of all possible options: guessing 𝐴, guessing 𝐵, and 434 

drawing. The expected value of drawing is more complex as it involves the calculation of a tree of 435 

possible outcomes contingent of future choices as well as their costs (see Kaelbling et al., 1998 for the full 436 

algorithm, and Averbeck, 2015 and Baker et al., 2019 for its applications to the beads task). Even more 437 

importantly for our illustration, the decision to continue or stop sampling and guess the more likely jar is 438 

simply made by taking the option with the highest expected value, i.e. 439 

𝑚𝑎𝑥(𝐸𝑉𝑔𝑢𝑒𝑠𝑠 𝐴, 𝐸𝑉𝑔𝑢𝑒𝑠𝑠 𝐵 , 𝐸𝑉𝑑𝑟𝑎𝑤)2. Therefore, although sampling decisions and expected values depend 440 

on posterior beliefs, other factors like the costs associated with different outcomes also influence these 441 

variables. In the context of the beads task, this strongly suggests that draws-to-decision depends not only 442 

on inferences about hidden states but also on the costs attributed to different courses of action. These 443 

costs may be implicit or explicit, related to financial costs, cognitive effort, social rewards, or others 444 

related factors. This can be shown by parameterizing the POMDP, which allows for the simulation of 445 

changes in draws-to-decision by modifying costs and other variables. Increased (subjective) costs of 446 

drawing, for instance, produces decreased draws-to-decision (Baker et al., 2019).  447 

Sampling decisions in information-sampling paradigms such as the draws-to-decision beads task 448 

are thus best conceptualized as a value-based decision. Interindividual differences in draws-to-decision 449 

would appear likely to depend on subjective valuation processes distinct from inference and cannot 450 

                                                       
2 Here, in line with the standard POMDP model, we use a deterministic choice rule whereby the action (guessing or 

drawing) with the highest expected value is selected. However, a softmax choice rule is commonly implemented in 

parameterized models to select an action probabilistically as a function of expected value (Baker et al, 2019; 

Averbeck et al, 2015; Moutoussis et al, 2011). As the difference in expected value between actions increases, so 

does the likelihood that the action with higher expected value will be selected. Choice stochasticity is modeled by 

incorporating an additional ‘temperature’ parameter that scales these likelihoods. 
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provide a direct readout of inferential processes unless the non-inferential valuation processes are 451 

carefully controlled. This notion is supported by preliminary data from our group (Baker et al., 2019) and 452 

other direct demonstrations that beads-task behaviors depend on task incentives (Grether, 1992; van der 453 

Leer and McKay, 2014b), as well as on the subjective evaluation of those incentives (Ermakova et al., 454 

2019). The corollary is that decreased draws-to-decision in schizophrenia may reflect a number of non-455 

inferential, valuation processes (Box 1). Specifically, patients may tend to draw fewer beads simply 456 

because they attribute different subjective costs to drawing or incorrect guesses compared to controls, 457 

especially given that the classic beads task does not stipulate explicit costs. Patients may be less 458 

motivated to make accurate guesses or more sensitive to the cognitive costs of additional samples. 459 

Alternatively, decreased draws-to-decision could reflect a calculation involving the subjective value of 460 

the time spent performing the task at the expense of other activities. The possibility of terminating the 461 

classic beads task by deciding to stop drawing earlier further suggests that a participant focused on 462 

maximizing reward rate may decide to do just that, in which case the “jumping-to-conclusions” behavior 463 

would actually reflect an optimal strategy.  464 

In sum, alterations in draws-to-decision could reflect a number of changes in value-based 465 

decisions apart from inference, and insufficient control over these non-inferential factors in classic 466 

versions of the beads task precludes their distinction from inferential processes (see Box 1 for a more 467 

detailed discussion of these factors and suggested approaches to minimize them). We now turn to more 468 

novel approaches to measuring inference that permit better control over these non-inferential factors. 469 

 470 

Box 1. Potential non-inferential factors accounting for the jumping-to-conclusions bias in 471 

schizophrenia 472 

 473 

In different sections of this paper, we discuss non-inferential factors that likely contribute to the common 474 

finding of decreased draws-to-decision in schizophrenia. These factors stand in contrast with the genuine 475 

and concrete alterations in causal inference that we hypothesize to underlie delusions—specifically, 476 

overweighting of prior beliefs in higher-level inference on hidden states. Here, we summarize these non-477 

inferential factors and suggest concrete approaches to minimize or account for their contributions to 478 

sampling decisions such as those determining draws-to-decision behavior. 479 

 480 

- Broader cognitive deficits that may generally interfere with task construal and performance. 481 

Broad neurocognitive deficits in schizophrenia (Fioravanti et al., 2005; Habtewold et al., 2020; Luck et 482 

al., 2019) include deficits in motivation (Green et al., 2012; Nakagami et al., 2008; Takeda et al., 2017), 483 

working memory (Forbes et al., 2009; Griffiths and Balzan, 2020), longer-term memory (Guo et al., 484 
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2019), and goal-directed planning (Siddiqui et al., 2019). Impaired performance on an information-485 

sampling task may thus simply result from inability to comprehend or retain task rules and instructions 486 

(Balzan et al, 2012a; Balzan et al., 2012b; Ross et al., 2015), insufficient task engagement (e.g., due to 487 

motivational deficits or misunderstanding), anxiety (Lincoln et al., 2010a) or feeling rushed (White and 488 

Mansell, 2009) (e.g., due to awareness of cognitive deficits), among other factors. Cognitive deficits, 489 

including low IQ (Tripoli et al., 2020), working memory (Broome et al., 2007; Freeman et al., 2014; 490 

Garety et al., 2013), and generally poor performance on neuropsychological testing (Andreou et al., 2015; 491 

Falcone et al., 2015; González et al., 2018; Lincoln et al., 2010b), have been shown to explain some or all 492 

the variance in draws-to-decision (or discrete presence of the jumping-to-conclusions bias) associated 493 

with a diagnosis of schizophrenia. A trivial explanation for reduced draws-to-decision in schizophrenia 494 

could be that the default strategy of a participant experiencing miscomprehension, forgetting, and/or 495 

anxiety is to terminate the task as early as possible (e.g., to alleviate the discomfort associated with 496 

anxiety and confusion). It is also possible that these factors further compound the value-based decision-497 

making factors discussed below. To minimize the contribution of broader cognitive deficits, decisions 498 

may be self-paced and experiments may include a comprehensive set of instructions, and comprehension 499 

and manipulation checks. Visual memory aids (Dudley et al., 1997b) and reminders of task instructions 500 

throughout the task may also be advantageous. Additionally, beads tasks should generally include 501 

sufficient trial repetitions to reliably ascertain task behaviors accounting for response variability (Balzan 502 

et al., 2017; McLean et al., 2018, 2020b; Moritz et al., 2017). 503 

 504 

- Other general factors associated with schizophrenia that may generally interfere with task 505 

construal and performance. In addition to the broad cognitive deficits mentioned above, other disease-506 

general factors that that tend to differ between patients with schizophrenia and controls may impact task 507 

performance. These include socioeconomic status (Hakulinen et al., 2020; Hudson, 2005), which may 508 

partly reflect impairments in cognitive functioning (Goldberg et al., 2011), co-morbid conditions, 509 

chronicity, institutionalization, and effects of psychiatric treatments. Some of these social factors may 510 

contribute to decreased familiarity to related tasks and the type of computer devices used to administer 511 

tasks. In addition, antipsychotic and other psychiatric medication may affect inference directly (Andreou 512 

et al., 2014; So et al., 2010) or indirectly (e.g., due to somnolence and inattention). These factors may 513 

result in decreased draws-to-decision for the reasons discussed in the point above and may be minimized 514 

using similar strategies. In addition, these issues may be addressed by conducting studies with larger 515 

samples of groups that are more closely matched on all relevant dimensions, including subsets of subjects 516 

with comparable socio-economic status and enough higher-functioning and unmedicated patients, patients 517 
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in earlier stages of their psychotic illness, and appropriate psychiatric and healthy control groups (Fine et 518 

al., 2007). Testing and reporting the effects of these variables in specificity analyses is also desirable. 519 

 520 

- Specific alterations in value-based decision-making affecting sampling decisions. Broad 521 

motivational deficits and more circumscribed alterations in value-based decision-making are common in 522 

schizophrenia (Gold et al., 2008; Strauss et al., 2014). In a non-incentivized sampling task, patients could 523 

exhibit decreased draws-to-decision because they assign less subjective value to possible incorrect 524 

guesses (e.g., due to differences in demand characteristics and the motivation to please the experimenter, 525 

possibly in relation to alterations in social reward processes; (Catalano et al., 2018; Fett et al., 2019; Lee 526 

et al., 2018)) or higher subjective value to collecting additional information samples (e.g., due to the 527 

additional time investment and the associated decrease in reward rate or perhaps due to increased 528 

perceived cognitive effort associated with integrating additional evidence, which could be related to 529 

alterations in cognitive-effort discounting; (Chang et al., 2020; Hartmann-Riemer et al., 2018; Kreis et al., 530 

2020)). Choice stochasticity2 could also contribute to diagnostic differences (Moutoussis et al., 2011). 531 

Financially incentivized tasks can minimize some of these factors (e.g., the contribution of social factors 532 

and their differential impact on clinical groups) and provide more experimental control over value-based 533 

decisions, which together with modeling can help parse contributions of valuation and choice (Baker et 534 

al., 2019). Disincentivizing certain strategies such as rushing through the task, for instance by imposing a 535 

minimum task duration, may also minimize the contribution of some of these factors and help 536 

homogenize task-solving strategies. 537 

 538 

 539 

 540 

 541 

[FIGURE 1 HERE] 542 

 543 

 544 

Enhanced approaches to probe inference and novel findings 545 

With the abovementioned limitations in mind and building on prior modeling work (Furl and Averbeck, 546 

2011; Moutoussis et al., 2011), we recently developed a variant of the beads task designed to isolate 547 

inferential alterations underlying delusions (Baker et al., 2019). This task is an information-sampling task 548 

where participants choose at each iteration within a trial whether to draw a bead or guess the identity of 549 

the chosen jar, which can thus measure draws-to-decision behavior. It also has a built-in belief-elicitation 550 

component consisting of prompts for probability estimates before each choice, recorded on a continuous 551 
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sliding scale, to allow for a more direct readout of inferential processes. The establishment of an explicit 552 

cost structure (with an initial endowment of $30 and explicit costs for sampling, -$0.30, and incorrect 553 

guesses, -$15), along with a minimum task duration, further makes the task incentive compatible and 554 

renders the resulting data tractable to the POMDP framework. Consistent with the behavioral economics 555 

literature at large (Camerer, 1997; Camerer and Mobbs, 2017; Camerer et al., 2016; Ortmann, 2009; van 556 

der Leer and McKay, 2014) and specific clinically relevant applications (van der Leer and McKay, 2014), 557 

our experience suggests that an incentivized task is critical to engage participants and ensure their 558 

responses reflect their true preferences, particularly in clinical populations. Further, the task 559 

administration protocol includes comprehensive instructions which emphasize the objective of 560 

maximizing rewards on the task, practice trials that serve to ensure task comprehension, and a visual aid 561 

to control for possible working-memory deficits. 562 

 We obtained data with this controlled task in 24 patients with schizophrenia with varying levels 563 

of delusional severity (11 of them unmedicated with antipsychotics) and 21 healthy controls (Baker et al, 564 

2019). First, a number of checks demonstrated the effectiveness of the various manipulations: sensitivity 565 

to task manipulations at the individual level and responses on a post-task questionnaire indicated 566 

participants adequately understood the task, which with the lack of systematic biases in initial (pre-bead) 567 

probability estimates, suggested that the data comported with model assumptions. A critical finding in 568 

this study was the strong correlation within patients between increased draws-to-decision and higher 569 

delusion severity scores, measured by PDI score, a finding at odds with the conventional wisdom of the 570 

beads task literature (but consistent with other data, including Tripoli et al, 2020). Importantly, this 571 

increase in draws-to-decision was specific to delusions, compared to a number of other clinical 572 

variables—even other positive symptoms—and cognitive and sociodemographic factors, and held in 573 

unmedicated patients alone. The insensitivity to general factors, including numeracy and working-574 

memory performance, implied that global cognitive deficits were not a main driver of the observed 575 

variability in task behavior. Indeed, patients with delusions tended to exhibit better accuracy than non-576 

delusional patients. Beyond the delusion-specific effect, we found that patients as a group showed the 577 

expected decrease in draws-to-decision compared to controls, but only when controlling for PDI scores, 578 

and this diagnosis effect disappeared after controlling for socioeconomic status. Altogether, these results 579 

describe (1) a more selective process linking increased information sampling to increased delusion 580 

severity and (2) a more general process linking decreased information sampling (a jumping-to-581 

conclusions-type bias) to the lower socioeconomic status and cognitive deficits associated with 582 

schizophrenia, in line with later work (Moritz et al., 2020; Tripoli et al., 2020); Box 1). This result raised 583 

the question of whether inferential processes were driving the delusion-related increase in information-584 

sampling behavior. 585 
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 We turned to the draw-by-draw probability estimates provided by the participants for an answer. 586 

A weighted Bayesian model equivalent to that in Eq. 4 provided a reasonable fit to the probability 587 

estimates and captured qualitative differences in changes in the estimates over draws, which appeared to 588 

update more slowly in more delusional patients. More importantly, we used the fitted model parameters 589 

for the prior weight 𝜔1 and likelihood weights 𝜔2 (one for each likelihood condition in the task) for each 590 

participant to evaluate interindividual deviations as a function of delusion severity. In line with previous 591 

work, healthy individuals and patients with low delusion severity tended to underweight prior beliefs 592 

(𝜔1 < 1). Our central finding, however, was that higher fitted values of the prior weight 𝜔1 correlated 593 

with both higher delusion severity and with increased draws-to-decision behavior in patients, suggesting 594 

that both delusions and their effect on information sampling depended on a specific inferential failure 595 

mode consisting of a relative prior overweighting (or lessened prior underweighting3) compared to non-596 

delusional patients. This interpretation was further corroborated by model-agnostic analyses and 597 

simulations of selective changes in the weight of prior beliefs in the context of the POMDP. This finding 598 

was specific to inferential processes as opposed to non-inferential processes. In a parameterized POMDP 599 

model, we showed that valuation and choice parameters based on subjective posterior beliefs were 600 

uncorrelated with delusions and draws-to-decision behavior, as were valuation parameters denoting 601 

subjective aversion to loss, risk, and ambiguity on other decision-making tasks.  602 

 Using a POMDP-inspired task design with a number of additional controls over standard designs, 603 

together with computational modeling of inference and information sampling, allowed us to uncover a 604 

candidate failure mode for delusions: a relative overweighting of prior beliefs in inference. This process 605 

appears to be clinically specific to delusions and computationally specific to inference. While these 606 

results certainly call for replication and extension, they may provide the foundation for a parsimonious, 607 

empirically supported model of delusions. Best practices in computational modeling include 608 

demonstrating the ability of selectively manipulated models to generate the observed behaviors via in 609 

silico simulations (Wilson and Collins, 2019), as we did in this work (Baker et al., 2019). In this vein, we 610 

will now use model simulations to illustrate how the proposed failure mode—increased prior weight 𝜔1—611 

produces a dynamic primacy bias in probabilistic belief-updating that captures the defining characteristics 612 

of delusional beliefs.  613 

 614 

                                                       
3 We have elected to refer to this computational phenotype as relative prior overweighting with respect to 

the non-delusional patients, who in absolute terms showed the commonly observed underweighting of 

prior beliefs. Delusional patients in Baker et al. exhibited prior weights 𝜔1 closer to the Bayesian 

benchmark of 1 and therefore this could also be framed as less absolute prior underweighting than non-

delusional individuals. However, we find framing this computational phenotype in relative terms to be 

more intuitive. 
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Overweighting of prior beliefs as a candidate failure mode for delusions 615 

Our previous empirical findings (Baker et al., 2019) suggest that an inferential alteration consisting of 616 

relative overweighting of prior beliefs could be responsible for delusions. It is worth considering whether 617 

the opposite is true: whether altered behaviors in delusional patients result from their delusions and 618 

general suspiciousness rather than reflecting an underlying alteration causing delusions. We considered 619 

and ultimately rejected the former possibility due to a number of observations that rendered it implausible 620 

(Baker et al., 2019). Instead, we ask here whether prior overweighting could theoretically cause the core 621 

phenomenological features of delusions. We mentioned in the introduction that delusional phenomena are 622 

highly variable across individuals; the content of delusional beliefs can involve any imaginable topic and 623 

varies widely with cultural and experiential context. Even falsity, part of the classical definitions of 624 

delusions, is now typically considered unnecessary to deem beliefs as delusional (e.g., as per the DSM-5 625 

definition). The core features refer to their specific form as highly certain and rigid beliefs, which are 626 

generally considered necessary features of delusions. Could prior overweighting generate excessively 627 

rigid and certain beliefs akin to delusions? 628 

We first consider the belief-updating dynamics induced by variations in prior weighting in the 629 

context of long-term sequential belief updating. This context is most relevant because in the real-world 630 

people usually sample ambiguous pieces of information over relatively long periods of time (Nastase et 631 

al., 2020), and because delusions are typically held over months or years with relative insensitivity to 632 

momentary situational factors (putting aside for expository purposes the roles of stress and negative 633 

emotion on delusion exacerbation (Ben-Zeev et al., 2012; Brenner and Ben-Zeev, 2014; Granholm et al., 634 

2020).  635 

Fig. 2a shows simulated data using the weighted Bayesian model (Eq. 4) in which two agents, 636 

identical except that one has a relatively lower prior weight (𝜔1 = 0.950) and the other a relatively higher 637 

prior weight (𝜔1 = 0.995), sequentially update their beliefs about hidden states upon receiving samples 638 

of information consistent with one of two complementary hypotheses with respect to the hidden states 639 

(𝜔2 = 1 for both agents). Note that the specific prior weights for these agents are selected here to visually 640 

highlight effects of interest the generality of which is proven later. This simulation is illustrated as the 641 

long-run posterior probability estimates produced by these two agents on a beads task where the evidence 642 

is weak (likelihoods 𝑃(𝑎|𝐴) = 𝑃(𝑏|𝐵) = 0.55). From the simulation in this ambiguous context, it 643 

becomes clear that the prior weight 𝜔1 affects the dynamics of sequential belief updating by controlling a 644 

primacy-recency bias. Higher 𝜔1 leads to a relative primacy bias characterized by the increased relative 645 

influence of older evidence (and decreased responsiveness to newer evidence) on current beliefs, or more 646 

“sticky” (less “leaky”) beliefs; lower 𝜔1 leads to a recency bias characterized by a reduced influence of 647 

older evidence (and increased responsiveness to newer evidence) on current beliefs, or more “leaky” 648 
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beliefs. This is in direct contrast to the likelihood weight 𝜔2, which scales the strength of all evidence 649 

equally, and consequently does not produce qualitative, dynamic changes in the belief trajectory (see 650 

below). While 𝜔2 is similar to the drift rate in evidence-accumulation models (Gold and Shadlen, 2007; 651 

Smith and Ratcliff, 2004), 𝜔1 makes the weighted Bayesian model a type of discrete, leaky accumulator 652 

(Bogacz et al., 2006; Busemeyer and Townsend, 1993; Usher and McClelland, 2001). 653 

At least at face value, this primacy-recency bias associated with the prior weight 𝜔1 appears to 654 

capture the two core features of delusions. Higher 𝜔1, similar to that we observed in delusional patients, 655 

produces higher certainty and greater rigidity in beliefs, both specifically stemming from a change in 𝜔1. 656 

Higher belief certainty is manifest from posterior beliefs reaching asymptotic levels closer to 1 (Fig. 657 

2a)—where 1 denotes complete certainty about the underlying hidden state and 0.5 reflecting total 658 

ambiguity. Higher rigidity (or equivalently more “stickiness”) in beliefs is clear when examining the 659 

belief dynamics in response to randomly drawn samples. Assuming the chosen jar is 𝐴 (or the black jar in 660 

Fig. 2a), if minority samples (𝑏) happen to predominate early on, followed by more majority samples (𝑎) 661 

later on, belief updates are more sluggish in the agent with higher 𝜔1; compared to the low-𝜔1 agent, the 662 

high-𝜔1 agent takes more samples to rectify its belief trajectory to start favoring of the correct hidden 663 

state 𝐴 (Fig. 2a). That is, beliefs in the high-𝜔1 agent are more resistant to evidence contrary to a favored 664 

hypothesis, or more rigid. Consistent with the observation from Jardri and Denève (Denève and Jardri, 665 

2016; Jardri and Denève, 2013), these dynamic effects are more apparent in ambiguous contexts, which 666 

could explain why more complex and ambiguous social contexts may be fertile ground for the 667 

development of delusions. In contrast to the dynamic effects of the prior weight 𝜔1, changes in the 668 

likelihood weight 𝜔2 can only induce higher belief certainty but not belief rigidity (Fig. 2b). 669 

The mathematics and generality of these effects can be derived from Eq. 4. To illustrate this, we 670 

start by re-writing Eq. 4 such that the logit posterior belief after seeing sample 𝑠, 𝑏𝑠, is the result of a 671 

weighted sum of the logit prior belief before observing this sample, 𝑏𝑠−1, with the logit likelihood (or log-672 

likelihood ratio) of sample 𝑠, 𝐿𝐿𝑅𝑠. (In the beads task, the 𝐿𝐿𝑅𝑠 is defined by the bead color in the current 673 

draw and the majority-to-minority ratio of bead colors in the hidden jar4.) 674 

 675 

                                         𝑏𝑠 = 𝜔1 ⋅ 𝑏𝑠−1  +  𝜔2 ⋅ 𝐿𝐿𝑅𝑠                                         Eq. 11 676 

 677 

                                                       
4 As in Eq. 2, the 𝐿𝐿𝑅𝑠 of sample 𝑠 is defined as 𝑙𝑜𝑔 (

𝑃(𝑠|𝐴)

𝑃(𝑠|𝐵)
) and it reflects the momentary evidence associated with 

this individual sample. For example, if the current sample 𝑠 is a green bead (𝑎) and the majority-to-minority ratio in 

the hidden jar is 60:40, the 𝐿𝐿𝑅𝑠 for the green jar (𝐴) based on this observed green bead (𝑎), is given by 𝑙𝑜𝑔 (
𝑃(𝑎|𝐴)

𝑃(𝑎|𝐵)
) 

= 𝑙𝑜𝑔 (
0.6

0.4
) = 0.405. 
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By expanding the prior term 𝑏𝑠−1 to make explicit how the posterior belief would be influenced 678 

by evidence from previously observed samples through an iterative process, the effect of 𝜔1 starts 679 

becoming apparent. We illustrate this using a sequence of three samples, the evidence from which is 680 

given (in reverse chronological order) by 𝐿𝐿𝑅𝑠, 𝐿𝐿𝑅𝑠−1, and 𝐿𝐿𝑅𝑠−2. 681 

 682 

𝑏𝑠 = 𝜔1 ⋅ (𝜔1 ⋅ 𝑏𝑠−2  +  𝜔2 ⋅ 𝐿𝐿𝑅𝑠−1) +  𝜔2 ⋅ 𝐿𝐿𝑅𝑠#Eq. 12  

 683 

𝑏𝑠 = 𝜔1 ⋅ (𝜔1 ⋅ (𝜔1 ⋅ 𝑏𝑠−3  +  𝜔2 ⋅ 𝐿𝐿𝑅𝑠−2) +  𝜔2 ⋅ 𝐿𝐿𝑅𝑠−1) +  𝜔2 ⋅ 𝐿𝐿𝑅𝑠#Eq. 13  

 684 

Assuming that the initial prior belief before observing any samples is unbiased (𝑏𝑠−3 = 0), we 685 

can rearrange this formula to clearly see the effects of 𝜔1 and 𝜔2 on sequential belief updating.  686 

 687 

𝑏𝑠 = 𝜔1
𝑠−1 ⋅ (𝜔2 ⋅ 𝐿𝐿𝑅𝑠−2)  +  𝜔1

𝑠−2 ⋅ (𝜔2 ⋅ 𝐿𝐿𝑅𝑠−1)  +  (𝜔2 ⋅ 𝐿𝐿𝑅𝑠)                                Eq. 14 

 688 

                                 𝑏𝑠 = (∑ 𝜔1
𝑠−𝑛 ⋅ (𝜔2 ⋅ 𝐿𝐿𝑅𝑛))𝑠−1

𝑛=1  +  (𝜔2 ⋅ 𝐿𝐿𝑅𝑠)                                Eq. 15 689 

 690 

This shows that 𝜔1 controls the influence of older evidence on beliefs over time. For 0 < 𝜔1 <691 

1, each sample of older evidence is discounted more than the next due to the increasing powers on the 𝜔1 692 

parameter. In contrast, 𝜔2, scales all samples of evidence equally.  693 

Therefore, mathematically, the prior weight 𝜔1 controls the rate of exponential decay in the 694 

contribution of a sample of evidence on a given belief, a form of primacy-recency bias that determines 695 

rigidity and responsiveness to new evidence (Baker et al., 2019; Benjamin et al., 2019; Benjamin, 2019; 696 

Enke and Graeber, 2019; Grether, 1980). Furthermore, the prior weight 𝜔1 directly limits maximum 697 

belief certainty over the long term. For an infinite series of samples, the posterior belief is bounded as a 698 

function of ω1 and the likelihood ratio (Benjamin et al, 2019), as:  699 

 700 

   𝑚𝑎𝑥(𝑏𝑠) =   lim
𝑠→∞

𝑏𝑠  =  
𝐿𝐿𝑅

1 −  𝜔1 
  #Eq. 16  

 701 

Per Eq. 16, agents with higher 𝜔1 have a higher ceiling on belief certainty, consistent with the relatively 702 

high certainty associated with delusional beliefs. Per Eq. 15 they have a relative primacy bias whereby 703 

beliefs are more influenced by older evidence and less responsive to new evidence, consistent with the 704 

belief rigidity characteristic of delusions. Both core features of delusions stem from higher ω1.  705 



 
 

23 
 

Eqs. 15-16 thus prove the generality of the effects exemplified in Fig. 2a, where higher values of 706 

the prior weight 𝜔1 simultaneously induce belief trajectories that are more rigid and reach higher 707 

certainty. In contrast, higher values of 𝜔2 only increase the certainty of beliefs without affecting their 708 

rigidity (Fig. 2b). Therefore, the dynamic changes in belief updating that capture belief rigidity (i.e., the 709 

relative primacy bias) uniquely depend on the prior weight 𝜔1. 710 

 For further clarification, Figs. 2c-e illustrate these belief-updating effects in the short term, over 711 

the course of a few samples. A lower-𝜔1 agent (Fig. 2c; 𝜔1 = 0.70; 𝜔2 = 1), resembling healthy 712 

controls, exhibits a clear “leak” in prior beliefs, showing less certain posterior beliefs after observing a 713 

sequence, 𝑎𝑎𝑎𝑎𝑏. For 0 < 𝜔1 < 1, because the weighted prior, 𝜔1 ⋅ 𝑏𝑠−1, is a fraction of the unweighted 714 

prior 𝑏𝑠−1, the leak is greater for more certain beliefs and becomes more obvious with more observed 715 

samples. This also explains its increased response to the “disconfirmatory” sample 𝑏 at the end of the 716 

sequence, relative to the higher-ω1 agent. Conversely, an agent resembling delusional patients with high 717 

𝜔1 (Fig. 2d; 𝜔1 = 0.98; 𝜔2 = 1) exhibits less “leak”, ends with higher certainty for 𝐴, and responds 718 

relatively less to the “disconfirmatory” sample. For contrast, Fig. 2e illustrates the isolated effects of 719 

changes in 𝜔2. 720 

Above, we said that delusional patients in Baker et al. (2019) showed slower belief updating 721 

compared to non-delusional individuals. But, in Fig. 2d the delusion-like, higher-ω1 agent mostly showed 722 

increased belief updates relative to the lower-ω1 agent. How can we reconcile this? An important insight 723 

from the dynamics of the weighted Bayesian model is that, unlike the optimal Bayesian model, its belief 724 

trajectories depend on the ordering in which sequential samples of information are presented; this 725 

model’s beliefs are path-dependent. The magnitude of the difference in belief updates for different values 726 

of ω1 will thus depend on the specific sequence of samples (Figs. 3a-c). Under the POMDP, this has 727 

important consequences for draws-to-decision behavior on the beads task. Differences in the prior weight 728 

ω1 induce order-dependent changes in beliefs (Figs. 3a-c) that, in turn, drive differences in the expected 729 

value of guessing versus drawing and consequently in draws-to-decision behavior (Figs. 3d-e). Thus, 730 

differences in draws-to-decision between delusional and non-delusional individuals—assuming these can 731 

be modeled via higher versus lower 𝜔1 values—will also depend on the sequence of samples, at least to 732 

some degree. We illustrate this point by showing that, depending solely on the sequence (the only 733 

difference between Figs. 3d and 3e), a higher-𝜔1 agent (𝜔1 = 0.98) can in principle show either 734 

decreased or increased draws-to-decision relative to a lower-𝜔1 agent (ω1 = 0.89). For this reason, the 735 

specific pattern of delusion-related effects in previous work may, among other things, depend on the 736 

specific bead sequences used in a given version of the task. This includes the pattern of delusion-related 737 

effects in Baker et al. (2019), where we observed slower belief updating and increased draws-to-decision 738 

in delusional patients. Model simulations using the specific bead sequences in that task showed that a 739 
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selective increase in ω1 drives increases in draws-to-decision over those particular sequences—this is 740 

because, for these sequences, increased ω1 causes on average slower belief updating and consequently 741 

less certain beliefs about the identity of the chosen jar at a given point within a trial, which results in 742 

smaller expected values for guessing relative to drawing and an increased tendency to draw. But the 743 

predicted behavior would vary for a different set of sequences. This raises yet another foundational issue 744 

with using draws-to-decision as a proxy for inference. By introducing sequential dependencies in belief 745 

updating, the substantial variability in prior weighting observed across individuals calls into question the 746 

utility of an aggregated summary measure such as draws-to-decision to capture the dynamic inferential 747 

alterations hypothesized to underlie delusions. 748 

 749 

[FIGURES 2 AND 3  HERE] 750 

 751 

Normative explanations for changes in prior weighting 752 

We began this paper by considering a normative Bayesian model of inference that optimizes estimation 753 

accuracy (Eqs. 1-3). One can think of this model as an idealized agent whose behavior is optimal, absent 754 

all constraints. Drawing on our own work, we then explored how a parameterized or weighted Bayesian 755 

model (Eq. 4) describes deviations from the optimal benchmark and between individuals that are relevant 756 

to delusions. We also showed how a particular deviation or failure mode in this descriptive model, a 757 

relative overweighting of the prior, may be theoretically sufficient to explain the core features of 758 

delusions. An unsatisfying aspect of this descriptive approach is that it does not provide a mechanistic 759 

explanation for why prior weighting may deviate from the normative optimum, or specify the constraints 760 

under which this deviation may actually not be suboptimal. Prescriptive models of inference, however, 761 

allow parameters (like the prior weight 𝜔1) to vary as a function of environmental circumstances and/or 762 

theorized internal limitations in information processing, permitting adaptations to these constraints. 763 

Consequently, in prescriptive models, the mathematically optimal value of a parameter may differ 764 

depending on these factors (as opposed to the fixed parameter values in the normative model). 765 

Prescriptive models can therefore point to maladaptations to presumed external or internal factors that 766 

might drive variability in parameter values. Here, we briefly introduce classes of prescriptive models 767 

where variable prior weighting is optimal, to gain theoretical insights into possible mechanistic causes of 768 

prior overweighting in delusional patients.  769 

 In one such model, the optimal weighting of prior beliefs is governed by environmental volatility, 770 

or the frequency of unannounced changes in hidden states (Glaze et al., 2015). The intuition is the 771 

following. In a situation where hidden states change abruptly (e.g., the identity of the chosen jar in the 772 

beads task suddenly changes mid trial), evidence presented before that change becomes uninformative. 773 



 
 

25 
 

Rationally, if one were able to identify or surmise the changepoint, then they should discount all beliefs 774 

formed on the basis of samples presented before the changepoint and start forming new beliefs “from 775 

scratch”. More generally, if changes in hidden states are frequent, then it is adaptive to diminish the 776 

contribution of (or increase the “leak” of) prior beliefs in a manner approximately equivalent to 777 

decreasing 𝜔1 (although in this model the weight on the prior depends non-linearly on both the likelihood 778 

and the hazard rate, H – the probability of a change in the hidden state per unit of time). In short, prior 779 

underweighting is optimal when the perceived environmental volatility is high. The corollary is that 780 

individuals who underestimate volatility may overweight prior beliefs compared to optimal agents. 781 

Therefore, the finding of relative prior overweighting in delusional patients could reflect underestimation 782 

of environmental volatility, which could in turn depend on alterations in neuromodulator and neural 783 

systems thought to contribute to this process, including the norepinephrine (Silvetti et al., 2013; Vincent 784 

et al., 2019) or dopamine (Cools, 2019; Diederen and Fletcher, 2020) systems. We have proposed a 785 

related mechanism for hallucinations whereby hallucinating patients with excess nigrostriatal dopamine 786 

may overweight lower-level perceptual priors through an inability to encode prior uncertainty (Cassidy et 787 

al., 2018), with other data supporting overweighting of lower-level perceptual priors in hallucinators that 788 

co-exist with—but do not necessarily depend on—alterations in volatility estimation in psychotic patients 789 

(Powers et al., 2017). Other related ideas are indeed commonplace in computational psychiatry, not only 790 

in schizophrenia but for several other disorders (Huang et al., 2017 2017; Lawson et al., 2017; Paliwal et 791 

al., 2019; Palmer et al., 2017), possibly due to the extensive use of algorithms implementing volatility-792 

dependent hierarchical inference in this literature (Adams, 2018; Adams et al., 2014; Heinz et al., 2019; 793 

Mathys, 2011; Stephan and Mathys, 2014; Sterzer et al., 2018). However, whether a volatility account 794 

could explain the delusion-related prior overweighting we observed in Baker et al. (2019) is unclear. 795 

Arguing against this, our task explicitly instructed participants that hidden states were stable during a trial 796 

(i.e., there was no volatility; H=0), so interindividual variability on this task appears more likely to 797 

depend on factors other than volatility estimation (although one counterargument is that a 798 

neuromodulatory or other neural alteration giving rise to volatility misestimation may be present even in 799 

stable environments and still impact behavior in this context). So are there other possible accounts, 800 

unrelated to volatility? 801 

 Another relevant model posits that inference depends on noisy neural samples that represent prior 802 

beliefs with some level of imprecision, and that optimal prior weighting is governed in part by the internal 803 

costs of improving precision in the representation of prior beliefs. This model can be placed within a 804 

larger class of models popular in the economics literature, the so-called “bounded rationality” models 805 

(Simon, 1990). Instead of solely focusing on environmental constraints, these models also consider 806 

optimal adaptations to internal limitations, or constraints, in information processing. In other words, these 807 
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models prescribe how optimal agents like humans and other animals should behave given their limited 808 

cognitive resources. In the case of the noisy sampling model of inference recently proposed by Azeredo 809 

da Silveira and Woodford (Azeredo da Silveira and Woodford, 2019), resource-limited agents are 810 

assumed to access a representation of prior evidence through noisy sampling, providing an imprecise 811 

reproduction of prior beliefs (Note that the term ‘sample’ is not to be confused with that we used in the 812 

context of information-sampling tasks, where a sample corresponded to an observed piece of objective 813 

evidence in the task, like a bead draw; here we use this term to refer to neural samples or instances of a 814 

cognitive retrieval process that represents prior information without requiring full access to it). The 815 

precision of this prior estimate can increase, reducing noise in the samples, but that comes at the cost of 816 

allocating more cognitive resources. This creates a tradeoff between the costs of cognitive precision and 817 

the cost of inaccurate predictions. An optimal agent can find the balance between these two costs by 818 

diminishing its reliance on prior evidence, which would be reflected in our descriptive model by 819 

decreasing the prior weight 𝜔1. This is consistent with data showing that humans tend to underweight 820 

prior beliefs, as mentioned above, which leads to posterior beliefs that are more responsive to new 821 

evidence and which always retain some level of uncertainty (like the lower-𝜔1 agents in Fig. 2a and 2c). 822 

The notion of prior sampling is also consistent with other work supporting the plausibility of sampling-823 

based models of approximate Bayesian inference (Bornstein et al., 2018; Haefner et al., 2016 2010; Heng 824 

et al., 2020; Hoyer and Hyvärinen, 2003; Shadlen and Shohamy, 2016). Applied to delusions, this 825 

framing may suggest that prior overweighting could result either from alterations in the prior-sampling 826 

process itself (e.g., increased redundancy and decreased noise in prior samples) or from alterations in 827 

strategies used to resolve the tradeoff (e.g., if delusional patients underestimate the cost of cognitive 828 

precision). 829 

 Beyond these two models, which can broadly explain prior overweighting as a consequence of 830 

maladaptations to environmental volatility or limited cognitive resources, a third possibility goes back to 831 

the standard algorithm of normative Bayesian inference. As mentioned above (Eqs. 5-8), a tradeoff 832 

between the prior weight 𝜔1 and the likelihood weight 𝜔2 is commonly assumed in Bayesian inference 833 

on continuous variables and consistent with empirical data demonstrating reliability-weighting in 834 

inference (Aller and Noppeney, 2019; Chambon et al., 2017; Chambon et al., 2011a; Chambon et al., 835 

2011b; Fetsch et al., 2012; French and DeAngelis, 2020; Orbán and Wolpert, 2011). Under such a 836 

tradeoff, the overweighting of prior beliefs could result from decreased reliability in the representation of 837 

new evidence (Teufel et al., 2015). More work is thus needed to arbitrate between this and the other 838 

possible explanations discussed in this section. 839 

 840 

Evidence for hierarchical-inference models of delusions 841 
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As mentioned earlier, weighting of prior beliefs and sensory evidence can also be accomplished through 842 

hierarchical message passing. What is the evidence that delusions result from alterations in these 843 

hierarchical processes?  844 

 The hierarchical-inference models discussed earlier theorize that delusions result directly or 845 

indirectly from increased weighting of sensory evidence. Generalized predictive-coding models suggest 846 

that overweighting of sensory evidence at low levels of the hierarchy, which initially causes amplified 847 

belief updating, secondarily result in an overcompensation characterized by overweighting of prior beliefs 848 

at higher levels (Adams et al., 2013). The latter stage is in principle consistent with the proposed failure 849 

mode we discussed at length. In contrast, the proposed version of circular inference discussed above 850 

posits that delusions primarily arise from disinhibition of bottom-up messages conveying sensory 851 

evidence (Jardri and Denève, 2013). While the belief-propagation model is itself hierarchical, the 852 

proposed alteration affects bottom-up connections similarly across the levels of the hierarchy. That is, the 853 

proposed alteration is not level-specific, although the hierarchical architecture of the model still enables 854 

level-dependent changes in belief updating. In any case, the proposed failure mode in circular inference 855 

would effectively manifest as overweighting of sensory evidence.  856 

 While empirical work supports hierarchical-inference models in general (Iglesias et al., 2013) and 857 

initial work is generally consistent with hierarchical alterations in schizophrenia (Diaconescu et al., 2014; 858 

Diaconescu et al., 2017; Haarsma et al., 2020a; Heinz et al., 2019; Henco et al., 2020; Sterzer et al., 859 

2019), specific links to clinical delusions have been more elusive in this emerging literature (Cole et al., 860 

2020; Diaconescu et al., 2019). Recent empirical studies inspired by generalized predictive-coding 861 

principles, however, hint at delusion-relevant hierarchical alterations. These studies investigated paranoid 862 

and persecutory ideation in the general population using tasks that manipulate volatility in underlying 863 

hidden states. Consistent with the notion of overweighting of prior beliefs at higher levels, these studies 864 

showed that more paranoid ideation was associated with overweighting of prior beliefs about volatility in 865 

non-social contexts (Reed et al., 2020) and overweighting of beliefs about the advice fidelity in social 866 

contexts (Diaconescu et al., 2020; Wellstein et al., 2020). More work is needed to probe this failure mode 867 

hypothesized to drive delusions, which given its hierarchical, state-dependent nature may require 868 

longitudinal investigations. 869 

 Some evidence supports circular inference in schizophrenia. In a probability-estimation version of 870 

a beads-like task with explicit cueing of prior information, patients with schizophrenia exhibited 871 

behaviors consistent with undercounting of prior beliefs and overcounting of sensory evidence compared 872 

to healthy controls (Jardri et al., 2017). Furthermore, the severity of delusional beliefs correlated with a 873 

fitted parameter reflecting bottom-up disinhibition. In principle, this result fits well with the predictions of 874 

the circular-inference model. However, its specificity to delusions versus other symptom dimensions like 875 
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disorganization was less clear. One concern is that working-memory or general cognitive deficits likely 876 

interfered with the acquisition of prior knowledge, introducing variability in the formation of prior beliefs 877 

based on briefly presented visual cues (interindividual variability in working-memory performance indeed 878 

correlated with a prior weight parameter). Thus, it is not entirely clear that alterations in the relative 879 

weighting of prior beliefs and sensory evidence reported using this paradigm can be confidently attributed 880 

to alterations in the integration of this information—i.e., the inference process itself—or that a more 881 

general cognitive deficit interfering with its acquisition could be definitively ruled out. Notwithstanding, 882 

further testing of the failure modes proposed within the circular-inference framework, and contrasting 883 

these against those proposed under the generalized predictive-coding framework, would be a fruitful 884 

future direction.  885 

 One appealing aspect of the proposed failure mode for delusions is that it may complement a 886 

mechanistic explanation of hallucinations that has received growing empirical support: namely, that 887 

hallucinations result from overweighting of perceptual prior beliefs (Corlett et al., 2019). As implied by 888 

the definition of the psychotic syndrome, hallucinations and delusions typically co-occur and evolve in 889 

parallel. A parsimonious explanation of psychosis would thus invoke a common driver for these 890 

symptoms. However, these individual symptoms sometimes occur in isolation, suggesting the existence of 891 

symptom-specific pathways. This may be reconciled within the hierarchical-inference framework 892 

discussed above, which generally posits that inferential neural systems feature different but 893 

interdependent levels of processing. In this context, one possibility (Davies et al., 2018; Horga and Abi-894 

Dargham, 2019) is that delusions and hallucinations result from similar algorithmic alterations occurring 895 

at different levels of the hierarchy supporting different computational goals. Both symptoms could be 896 

explained by a similar failure mode—i.e. overweighting of prior beliefs—with hallucinations arising from 897 

prior overweighting at lower hierarchical levels supporting inference on stimulus properties and 898 

delusions, in contrast, arising from prior overweighting at higher hierarchical levels supporting causal 899 

inference on hidden abstract states. This scenario would predict that hallucination severity should 900 

correlate preferentially with prior biases in perceptual tasks involving signal detection or magnitude 901 

estimation and delusion severity instead with prior biases in hidden-state inference tasks such as the beads 902 

task, consistent respectively with our prior behavioral work in hallucinations (Cassidy et al., 2018) and 903 

delusions (Baker et al., 2019). Critically, the interdependence between hierarchical levels inherent to this 904 

framework suggests that alterations at one level of the hierarchy may propagate to, or otherwise impact, 905 

other levels (Chaudhuri et al., 2015; Cicchini et al., 2020). Alternatively, partially shared elements within 906 

circuit motifs present at several levels may provide similar, although not necessarily identical, levels of 907 

susceptibility to common drivers (e.g., dopamine or glutamatergic dysfunction). Therefore, in principle 908 

this framework could readily accommodate the usual association of psychotic symptoms as well as their 909 
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possible dissociation, for instance if differences in circuitry at specific levels (e.g., long-range 910 

connectivity or presence of certain cell populations) render them more susceptible or resilient than other 911 

levels. Examining neuroanatomical hierarchies of intrinsic neural timescales in fMRI data, we found 912 

initial support for this notion by showing that hallucinations and delusions correlate with distinct 913 

hierarchical alterations in the auditory and somatosensory systems (Wengler et al., 2020b). 914 

Despite the valuable contribution of hierarchical-inference models to computational psychiatry, 915 

specific alterations in hierarchical inference linked selectively to delusions have not been conclusively 916 

established. Given this, and since the failure mode we have focused on—relative overweighting of high-917 

level priors in causal inference on hidden states—can indeed be accommodated within the hierarchical-918 

inference framework, we argue that this failure mode remains a top candidate the implementation of 919 

which is worth considering further.   920 

 921 

Potential neurobiological implementations of prior weighting and delusions 922 

To attain a holistic perspective on the merit of prior overweighting as a failure mode driving delusions, 923 

one must consider what is known about the neurobiological implementation of prior weighting in the 924 

brain and how it intersects with the pathophysiological substrates of delusions. Here we briefly discuss a 925 

selection of relevant neurobiological findings, starting with the pathophysiology of delusions. 926 

 The expression of psychosis and its response to antipsychotic treatment has long been linked to 927 

mesostriatal dopamine excess (Howes et al., 2012; Weinstein et al., 2017). Given the established role of 928 

phasic dopamine signals in associative learning (Glimcher, 2011; Schultz, 2016; Schultz et al., 1997), 929 

current theories posit that delusions result from disruptions in associative learning caused by aberrant 930 

dopamine signaling (Kapur, 2003). Such alterations, more typically framed in the context of 931 

reinforcement learning (Maia and Frank, 2011; Sterzer et al., 2018), are thought to drive unwarranted 932 

beliefs about the relevance or informativeness of neutral events and their bearing on causal inferences—933 

sometimes referred to as salience misattribution (Fletcher and Frith, 2009; Heinz et al., 2019; Kapur, 934 

2003; Sterzer et al., 2018)—and can thus be framed in the context of the type of inferential processes we 935 

have discussed so far (Fletcher and Frith, 2009). This parallels the growing appreciation of a broader role 936 

of phasic dopamine signals in updating of beliefs that go beyond reward expectations (Gershman and 937 

Uchida, 2019). Some empirical studies in delusional patients generally suggest alterations in inferential 938 

processes. For instance, in one such study delusional patients exhibited an attenuation of fMRI signals 939 

reflecting violation of expected outcomes acquired through associative learning in a region of right lateral 940 

prefrontal cortex (Corlett et al., 2007). Similar regions of anterior-lateral prefrontal cortex have been 941 

implicated in belief updating in health (Edelson et al., 2014; Fleming et al., 2018) and in the development 942 

of post-lesion delusions in a network-localization lesion study (Darby et al., 2017). This suggests that 943 
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prefrontal circuits relevant to belief updating may be dysfunctional in delusional patients, but does not 944 

implicate dopamine. A recent study in healthy individuals provided more direct evidence for an 945 

involvement of dopamine in belief updating during an inference task (Nour et al., 2018). Here, molecular-946 

imaging markers of striatal dopamine function correlated negatively with fMRI belief-updating signals in 947 

the striatum. In turn, decreased belief updating correlated with subclinical paranoid ideation, altogether 948 

providing feasibility for a model whereby excess striatal dopamine impairs inferential processes leading 949 

to delusional ideation. Despite many open questions, this literature broadly suggests that the 950 

pathophysiology of delusions involves mesostriatal dopamine excess and dysfunctions in prefrontal-951 

striatal circuits supporting associative learning and inferential processes. Yet, the exact nature of the 952 

contributions from dopamine and different elements of this associative circuitry to delusions remain 953 

obscure. And so does their potential role in neurally instantiating prior weighting and its hypothesized 954 

alterations. 955 

Some fMRI studies in health speak to plausible neural implementations of prior weighting. One 956 

study examined this by manipulating the consistency across sequential samples of evidence to induce 957 

more or less reliable prior knowledge (Vilares et al., 2012). By also manipulating and controlling the 958 

reliability of the likelihood within a trial, this work showed that fMRI activations in the striatum and in 959 

orbitofrontal parts of the prefrontal cortex specifically scaled with the reliability of prior knowledge. 960 

These activations correlated with behavioral weighting of prior beliefs in response to the statistics of the 961 

environment, suggesting a potential implementation of prior weighting in frontostriatal circuits. Other 962 

lines of work also suggest that prefrontal cortex and its interactions with parietal regions contribute to 963 

balancing the relative weight of prior beliefs and sensory evidence (Chambon et al., 2017; Flounders et 964 

al., 2019). Taken together, this suggests that fronto-parietal-striatal circuits may control the weight of 965 

prior beliefs in inference. 966 

Electrophysiology and biophysical modeling have also shed light into the neuronal and circuit-967 

level implementation of inferential processes similar to those we have discussed here. Many of these 968 

studies have used the “weather prediction task” (Knowlton et al., 1996 1996). Like the beads task, the 969 

weather prediction task probes behaviors relevant to inference on hidden states from a series of predictive 970 

samples (e.g., prediction of weather conditions, like a rainy day, 𝐴). But unlike the beads task, the 971 

likelihood associated with the samples of evidence is not explicitly instructed and needs to be learned 972 

through trial and error. Distinct samples provide different levels of evidence strength or likelihoods [e.g., 973 

𝑃(𝑥|𝐴) > 𝑃(𝑦|𝐴) > 𝑃(𝑧|𝐴)] and participants need to infer the hidden state by iteratively updating their 974 

beliefs as they observe a sequence combining several distinct samples [e.g., 𝑃(𝐴|𝑥𝑦𝑧)]. Single-unit 975 

recordings from nonhuman primates performing a two-alternative-forced-choice version of this task 976 
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revealed a neural substrate for sequential belief updating, which consisted of signals encoding the logit 977 

likelihood in a region of parietal association cortex (Kira et al., 2015; Yang and Shadlen, 2007). 978 

A biophysical neural-network model was developed to recapitulate the neuronal and behavioral 979 

findings on this task and provide insights into a plausible circuit-level implementation (Soltani and Wang, 980 

2010). Importantly, this model learned the expected value of each sample via simple Hebbian synaptic-981 

plasticity rules like those involved in dopamine-dependent associative learning. As a result, synapses 982 

from neurons selective to specific samples that project onto expected-value neurons reflected the 983 

conditional probability of a state given that a specific sample appeared in the series [�̃�(𝐴|𝑥)]. Using this 984 

‘naïve’ posterior belief as conservative proxy for the sample likelihood [𝑃(𝑥|𝐴)], this model was able to 985 

infer hidden states. This biophysical model not only suggests plausible circuit mechanisms for 986 

approximate Bayesian inference but also for variability in prior weighting. Even though the model’s 987 

architecture was determined by biophysically realistic principles, its behavior exhibited deviations from 988 

normative Bayesian inference similar to deviations in humans. Like humans, the model tended to 989 

underweight prior beliefs after a single sample and overweight priors in other circumstances where human 990 

participants tend to do so (Gluck and Bower, 1988; Soltani et al., 2016). This modeling thus suggests a 991 

potential dopamine-dependent synaptic mechanism for non-normative prior weighting in some forms of 992 

inference. Further modeling work is warranted to examine this intriguing mechanism, particularly in the 993 

context of the beads task and other online inference paradigms that do not require trial-and-error learning.   994 

Altogether, this work suggests potential neurobiological substrates for changes in prior weighting 995 

that could implement the hypothesized inferential alterations behind delusions. Although much work is 996 

still needed in this area, one possibility is that dysregulated dopamine signals may disrupt inferential 997 

processes implemented in part in the striatum. Converging evidence also points to an involvement of 998 

higher-order prefrontal-parietal cortical regions that participate in inferential processes in health. Other 999 

brain regions and neuromodulatory systems involved in inference (e.g., norepinephrine) may be important 1000 

candidates requiring further investigation. So far, however, an underlying substrate for prior 1001 

overweighting in delusions remains unknown. 1002 

 1003 

Conclusions and future directions 1004 

In this review, we have discussed inferential theories of delusions in psychosis and the empirical evidence 1005 

favoring certain models and challenging others. Implicit in the notion of these inferential theories is that 1006 

delusions result from narrow failure modes that should manifest as quantitative deviations from 1007 

inferential biases common in health, not as broad deficits in neurocognition. Indeed, delusion severity 1008 

tends to be uncorrelated with overall performance on standard neuropsychological tests (Baker et al., 1009 

2019; Keefe et al., 2006). And at least a subset of patients with schizophrenia do not exhibit obvious 1010 
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neuropsychological impairment, yet they still present with delusions and other symptoms of psychosis 1011 

(Goldstein et al., 2005; Palmer et al., 1997). Likely in that group was John Nash, the Nobel laureate 1012 

mathematician whose experiences marked the beginning of our review. By all accounts a brilliant 1013 

logician, and a seminal contributor to the subject of game theory, Nash nonetheless suffered from 1014 

severely disruptive and persistent delusions. In a famous exchange (Nasar, 1998), a colleague asked him, 1015 

“How could you, a mathematician, a man devoted to reason and logical proof [...] believe that 1016 

extraterrestrials are sending you messages?". To which Nash replied, "Because the ideas I had about 1017 

supernatural beings came to me the same way my mathematical ideas did, so I took them seriously." As 1018 

far as he was concerned, he arrived at his conclusions through logical reasoning; when he recovered, he 1019 

even referred to his delusions in inference terms as “delusional hypotheses” (Nash, 1994). While 1020 

anecdotal, the selective inferential alterations implied by his case suggest the need for similarly selective 1021 

investigations to isolate the mechanisms of delusions in others.   1022 

Based on a critical review of the beads-task literature and theoretical considerations (Figs. 1 and 1023 

3), we have presented an argument against the utility of the classic beads task to isolate inferential 1024 

processes. Our reading of the literature suggests there is insufficient evidence to conclude that the 1025 

jumping-to-conclusions bias indicates an inferential alteration relevant to delusions. Instead, we take the 1026 

literature to provide substantial support that this bias, and draws-to-decision behavior in the classic beads 1027 

task more generally, mainly reflects general cognitive deficits or motivational factors rather than genuine 1028 

alterations in inferential processes. The arguments we present caution against assuming that a specific 1029 

relationship between the jumping-to-conclusions bias and clinical delusions has been established, or that 1030 

such a presumed relationship supports an account of clinical delusions characterized by the overweighting 1031 

of sensory evidence during inference. Further discussing other lines of work that may favor this 1032 

interpretation (e.g., in subclinical populations or using other paradigms) is beyond the scope of this 1033 

review; we simply contend here that invoking the beads-task literature in schizophrenia as direct support 1034 

for this view is unwarranted.  1035 

We also describe enhanced approaches that show more promise in isolating delusion-specific 1036 

inferential alterations. We focused on describing our novel approach combining a controlled paradigm 1037 

and computational modeling, which has produced results pointing to a concrete failure mode in inference 1038 

that is selectively associated with delusions: relative overweighting of prior beliefs. Through in silico 1039 

simulations based on a weighted Bayesian model, we went on to show that this single failure mode can 1040 

theoretically explain the two formal features that define delusional beliefs, namely their high certainty and 1041 

rigidity (Figs. 2a-c). We also discussed possible extensions of this work based on prescriptive models that 1042 

cast prior weighting as an adaptive response to external changes in the environment or internal constraints 1043 

in information processing, suggesting that maladaptation to these conditions could explain the proposed 1044 
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failure mode. We then assessed the neurobiological intersections between the pathophysiology of 1045 

delusions and the potential neural implementation of prior weighting during inferential processes. Despite 1046 

our limited understanding, the available data support the biological plausibility of the proposed failure 1047 

mode and hint at possible implementations at the system and circuit levels. Taking all this together, and 1048 

drawing on early empirical support, we propose prior overweighting in causal inference as a 1049 

parsimonious, and plausible, candidate failure mode for delusions. Future studies are needed to confirm 1050 

and further investigate this mechanism, including its precise neural implementation. To this end, we offer 1051 

several future directions which we believe will be fruitful avenues for deepening our neurocomputational 1052 

understanding of delusions. 1053 

First, we believe there is room for further improvements in experimental paradigms, which we 1054 

take as perhaps the most critical aspect of future work. Incentive compatibility is thought to contribute to 1055 

the high replicability of economics paradigms, encouraging the reporting of true preferences and beliefs 1056 

(Camerer, 1997; Camerer and Mobbs, 2017; Camerer et al., 2016). This feature may be critical for future 1057 

belief-elicitation paradigms trying to isolate inference in delusions, in line with previous reports (van der 1058 

Leer and McKay, 2014). Second, we believe that the independent replication of key behavioral and 1059 

modeling results, comparisons across paradigms and models, and the confirmation of specific associations 1060 

with delusions will be necessary to establish a solid foundation for further work (including 1061 

backtranslation, causal investigations, and forward translation towards treatment development). Although 1062 

our simulations indicate that the proposed failure mode for delusions could parsimoniously explain the 1063 

gradual development and maintenance of delusional beliefs (Fig. 2a), an important milestone will be to 1064 

show whether this prior overweighting is indeed associated with attenuated delusions in psychosis high-1065 

risk populations, and whether the evolution of this computational phenotype predicts clinical trajectories. 1066 

If alterations in higher-level inferences on hidden causal states are indeed confirmed to be specific to 1067 

delusions, and computationally distinct (albeit algorithmically similar) from lower-level inferential 1068 

alterations linked to hallucinations (Horga and Abi-Dargham, 2019; Wengler et al., 2020a), that would 1069 

lend further support for hierarchical frameworks with potential to provide an integrative understanding of 1070 

psychosis as a whole. Third, connecting the proposed algorithmic mechanisms to underlying biological 1071 

implementations will lend further support for their feasibility and provide targets for interventions. Given 1072 

that inputs from different hierarchical levels are thought to segregate into specific cortical layers within a 1073 

brain region (Lawrence et al., 2019; Stephan et al., 2019), new layer-specific, high-resolution fMRI 1074 

techniques (de Hollander et al., 2021; Haarsma et al., 2020b) may be a promising avenue in this regard 1075 

(for further discussion, see Haarsma et al., 2020b).  1076 

Specific alterations in social inferences and social cognition have also been proposed to underlie 1077 

paranoid ideation and delusions (Bell et al., 2020; Diaconescu et al., 2019; Diaconescu et al., 2020; 1078 
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Wellstein et al., 2020), as well as schizophrenia more generally (Henco et al., 2020; Patel et al., 2020). 1079 

The link to delusions seems at odds with our findings in Baker et al. (2019), including the strong 1080 

correlation between paranoid delusions and prior overweighting in a non-social, emotionally neutral 1081 

context, and with other recent findings in paranoid ideation using a similarly neutral reversal-learning task 1082 

(Reed et al., 2020). As noted by Diaconescu et al.(2020; 2019), the open question here is whether 1083 

delusions result from basic inferential alterations that manifest in generally ambiguous contexts (like 1084 

social situations), or whether they result specifically from alterations in social inference. Direct 1085 

comparisons of social and non-social inference in delusional patients would help settle this debate. 1086 

Finally, once abnormalities in inferences governing the form of delusional beliefs are identified, a 1087 

comprehensive model of delusions can and should aspire to address the thematic content of delusions. 1088 

Despite the issues we have raised about the content of delusions, focusing on the more consistent and 1089 

tractable aspects of their content may help elucidate the overrepresentation of delusional themes with 1090 

negative emotional valence (Appelbaum et al., 1999; Sharot and Garrett, 2016; Woodward et al., 2014). 1091 

Moving beyond the specter of the jumping-to-conclusions bias and pursuing the goals set out above may 1092 

yet transform our understanding of delusions, and bring us ever closer to a comprehensive, computational 1093 

model of this enigmatic symptom. 1094 
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 1102 

Figure captions 1103 

 1104 

Figure 1. Distinct, nested processes linking inference and sampling decisions in the POMDP 1105 

framework. For (a) a sequence of observed samples (grayed-out samples reflect future samples that the 1106 

agent never sees), this instantiation of the POMDP model shows (b) the logit posterior beliefs of the ideal 1107 

Bayesian observer (𝜔1 = 𝜔2 = 1) after each sample and (c) the difference in expected value between the 1108 

best guess (the guess associated with the jar that has highest expected value) and drawing another 1109 

sample. (d) A stopping decision is made when the expected value of the best guess is higher than the 1110 

expected value of drawing another sample, i.e., the first point at which the difference in expected values 1111 

is above 0. This point represents the optimal draws-to-decision (DTD). Note that it takes the optimal agent 1112 

6 samples (draws) to reach the stopping point based on valuation, even though the exact same level of 1113 
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belief certainty was achieved after only 4 samples (draws). This illustrates that DTD is depends on value-1114 

related factors beyond inference. The simulation uses cost parameters (starting endowment of $30; $0 for 1115 

a correct response; -$15 for an incorrect response; -$0.30 for a draw) consistent with the experimental 1116 

parameters from Baker et al. (2019).  1117 

 1118 

Figure 2. Dynamic effects of prior weighting on inference and relevance to the form of delusions. 1119 

(a) Long-term trajectory of beliefs with respect to a black jar (in probability space) for two agents (higher 1120 

𝜔1 = 0.995; lower 𝜔1= 0.950; 𝜔2 = 1 for both agents) over 450 randomly selected samples (with 1121 

replacement) in the beads task. Here, and in general, please note that parameter values were selected to 1122 

illustrate the belief-updating effects highlighted in the main text. The correct (black) jar has a ratio of 55 1123 

black beads to 45 white beads, reflecting an ambiguous situation of weak sensory evidence (likelihood of 1124 

0.55). This simulation illustrates an 𝜔1-driven rigidity effect, whereby the beliefs of the higher-𝜔1 agent 1125 

take more disconfirmatory samples to return to an uncertain level, and a concomitant certainty effect, 1126 

whereby its beliefs tend to be more certain, relative to the lower-𝜔1 agent. (b) Long-term trajectory of 1127 

beliefs with respect to a black jar (in probability space) for two agents (higher-𝜔2 = 1; lower-𝜔2= 0.40; 1128 

𝜔1 = .95 for both agents) over the same 450 randomly selected samples in (a) in the beads task. For 1129 

reference, the higher-𝜔2 agent in (b) is identical to the lower-𝜔1 agent in (a). Changes in 𝜔2 induce a 1130 

certainty effect, i.e., the higher-𝜔2 agent tends to reach more certain beliefs than the lower-𝜔2 agent, but 1131 

has no effect on belief rigidity. (c, d, e) Simulations illustrating local belief-updating dynamics over 5 1132 

samples for a (c) lower-𝜔1 agent (𝜔1= 0.70; 𝜔2 = 1; similar to healthy individuals in Baker et al.), a (d) 1133 

higher-𝜔1 agent (𝜔1= 0.98; 𝜔2 = 1;  consistent with delusional patients in Baker et al.), and a (e) lower-𝜔2 1134 

agent (𝜔1= 0.70; 𝜔2 = 0.40). The dotted diagonal lines depict the “leak” of logit prior beliefs and their 1135 

endpoints indicate the value of the weighted prior for the next belief update. The solid horizontal line is a 1136 

reference to indicate the value of the unweighted prior. Thus, the distance between the solid line and the 1137 

dotted line reflects the magnitude of the prior leak for each update. The dashed vertical lines reflect the 1138 

contribution of the logit likelihood (LLR) to the belief update. It is apparent in (a) that for lower-𝜔1 agents, 1139 

prior beliefs “leak” more, gradually decreasing the magnitude of belief updates over samples leading to 1140 

relatively less certain and less rigid beliefs; and (b) shows that these effects are attenuated for higher-𝜔1 1141 

agents, leading to relatively more certain and more rigid beliefs. Comparing (a) and (c) highlights that 1142 

differences in 𝜔2 only scale belief certainty and do not affect belief rigidity. 1143 

 1144 

Figure 3. Evidence-order effects on belief updating and draws-to-decision under the weighted 1145 

Bayesian model. (a, b) Simulation of logit posterior beliefs favoring the black jar for a higher-𝜔1 agent 1146 

(𝜔1 = 0.98) and a lower-𝜔1 agent (𝜔1 = 0.70) in two sequences. In (a) evidence favoring the black jar (the 1147 

correct jar) occurs earlier in the sequence, and the higher-𝜔1 agent generally exhibits more certain beliefs 1148 

than the lower 𝜔1 agent that the majority black jar is the correct jar. In (b) evidence favoring the black jar 1149 

occurs later in the sequence, and the higher-𝜔1 agent instead exhibits less certain beliefs than the lower-1150 
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𝜔1 agent. Note that parameters were selected to visually exaggerate the effects of interest, although their 1151 

generality is addressed in the main text. (c) Simulations for various sequence orders including the same 1152 

samples of evidence show order-dependent differences in beliefs (in probability space) on a sample-by-1153 

sample basis between a higher-𝜔1 (𝜔1 = 0.98; similar to delusional patients in Baker et al.) and a lower-1154 

𝜔1 agent (𝜔1= 0.89; 𝜔2 = 1 for all simulations). Positive values (shades of red) in the heatmap indicate 1155 

that the higher-𝜔1 agent exhibits more certain beliefs than the lower-𝜔1 agent that the black jar was the 1156 

correct jar, and negative values (shades of blue) indicate that the lower-𝜔1 agent was more certain. (d, e) 1157 

Simulations of the POMDP valuation process comparing two agents (the same agents from 3c) across 1158 

different sequences to illustrate how evidence order affects sampling (draws-to-decision) behavior. The 1159 

remaining POMPD parameters are equivalent to those in Fig. 1 except for the cost of drawing a bead 1160 

(here $0.10 instead of $0.30 for illustrative purposes). Note that DTD differences between the two agents 1161 

are opposite between the two sequences. The asterisk in d indicates the point at which the lower-𝜔1 1162 

agent is forced to make a guess because the maximum number of samples is 8 (as in the Baker et al. 1163 

task). 1164 
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